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Abstract—The practical operation of wearable robots requires
intuitive, compact, yet reliable control interfaces. However, cur-
rent myoelectric interfaces based on surface electromyography
(EMG) often fail to achieve these requirements by demanding
multiple sensors and exhibiting unreliable performance under
limb posture changes. In this study, we show that a myoelec-
tric interface on the musculotendinous junctions (MTJs) of the
flexor digitorum superficialis (FDS) enables reliable control of
a robotic glove with a single EMG sensor by identifying power
grasp intentions. We found that the myoelectric signals from
the MTJs of the FDS show significantly increased amplitudes
exclusively when a power grasp is performed, regardless of the
arm posture. We systematically verified that, in identifying power
grasp intentions, the proposed single-sensor myoelectric interface
even outperforms a five-sensor myoelectric interface around the
proximal forearm. By exploiting the unique biological feature
of the MTJs, we devised two myoelectric control methods for a
robotic glove—Dual-threshold control and Morse-code control—
and further showed their performances in practical operations.
Dual-threshold control enables direct co-operation between the
user and the robotic glove, and Morse-code control provides
various command options for the user.

Index Terms—Wearable robots, exoskeletons, robotic glove,
exo-glove, electromyography, musculotendinous junctions.
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I. INTRODUCTION

INTENTIONS of human actions are reflected in biolog-
ical signals. A human muscle is composed of multiple

motor units, and surface electromyography (EMG) records the
generation and propagation of muscle unit action potentials
(MUAPs) from the surface of the skin [1]. By monitoring
MUAPs, a myoelectric interface based on EMG provides
a communication window that transfers human movement
intentions into control commands for prosthetics [2]–[4],
exoskeletons [5]–[8], or robotic manipulators [9].

For the past few decades, myoelectric interfaces with EMG
sensors fueled hope in enabling intuitive human–exoskeleton
co-operation. Still, there are few practical issues to solve
before implementing myoelectric interfaces into robotic gloves
that augment human motor performance.

One major issue is the requirement of multiple EMG sensors
for hand-related intention interpretation [10], [11]. To date,
EMG sensors were usually placed between the muscle inner-
vation zones and tendon zones because these regions were
known to provide the best signal quality [12] (we will use the
term ‘muscle mid-lines’ for these locations). However, human
forearms are composed of multiple overlapping muscles that
hide the muscle mid-lines from the surface of the skin, which
hinders the EMG sensors from accessing clear myoelectric
signals [13]. For example, the flexor digitorum superficialis
(FDS), a finger flexor muscle, is overlapped by the flexor carpi-
radialis (FCR) and ulnaris (FCU), the wrist flexor muscles,
and this anatomical feature hampers accessing the myoelec-
tric signals from the FDS only [13], [14]. Therefore, it has
been necessary to utilize pattern analysis technologies with
multiple sensors to overcome signal interference from syn-
ergistic muscle activations or crosstalks [15]. In addition, a
process for placing the sensors requires a procedure of finding
the optimal locations, which differ from person to person due
to anthropometric differences among individuals. Designing a
functional myoelectric interface necessitates this cumbersome
process of customization, and the necessary effort obviously
increases with the number of sensors.

Another critical issue is that myoelectric interfaces on the
forearm usually do not guarantee reliability in actual situations
where humans interact with the surrounding environment.
Human actions for handling objects mostly involve changes in
the arm posture, and these changes have detrimental effects on
the pattern recognition performance of the interface [16], [17].
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Fig. 1. Location of the musculotendinous junctions (MTJs) of the flexor
digitorum superficialis (FDS). Since wrist related muscles do not overlap the
MTJs of the FDS, the myoelectric signals from the MTJs interfere less with
other signals from wrist muscles, compared to other signals from the muscle
mid-lines in the forearm.

The locations of muscle innervation zones shift when human
joints rotate, and this can change the properties of myoelec-
tric signals from the muscle mid-lines [18]. Moreover, various
and even unanticipated patterns of human movements are usu-
ally introduced during actual operations [19]. Thus, to prevent
any unintended operations of robotic gloves, the myoelectric
interface has to distinguish the intended motion from other
movements regardless of the arm posture changes.

The risk of an unexpected or improper operation becomes
a particularly crucial issue when exoskeletons transmit high-
force to augment human motor performance. For example,
a robotic glove that augments power grasps, which is fre-
quently executed to handle power tools securely or lift heavy
objects [20], directly co-operates with the user’s fingers. In
this situation, unintended actuation forces to the fingers could
directly jeopardize the user’s safety, which can be fatal in harsh
environments. As an example of occupational cases, firefight-
ers who need to grip and pull a firehose or lift heavy objects
in disaster scenes need to maintain high grip strength [21]. For
manipulating objects in outer space, astronauts as well need
high grip strength to compensate for the deterioration in grasp
performance when using extravehicular gloves [22]. For such
occupations, guaranteed safety is critical in the development
of robotic gloves that augment power grasping. Myoelectric
interfaces for such hand exoskeletons should robustly identify
the power grasp intention from other intended motions such as
wrist movements, even at the maximum voluntary contraction
(MVC) level, regardless of arm posture changes. For example,
the robotic glove should not augment grasping during wrist
movements.

In this study, we show that a myoelectric interface on the
musculotendinous junctions (MTJs) of the FDS enables reli-
able control of a robotic glove with a single EMG sensor by
identifying power grasp intentions. The MTJs were known to
provide low-quality myoelectric signals. However, we found
that the EMG signals from the MTJs of the FDS (Fig. 1)
show significantly increased amplitudes exclusively when a
high-force power grasp is performed. Since wrist related mus-
cles do not overlap the MTJs of the FDS, the myoelectric
signals from the MTJs interfere less with other signals from
wrist muscles, compared to other signals from the muscle

Fig. 2. System overview. Exo-Glove Power (EGPO) is a compact/portable
soft robotic glove for augmenting the grasping force while the user intends a
firm power grasp to secure an object. The single EMG sensor-based myoelec-
tric interface in EGPO identifies the user’s power grasp intention to actuate
the robot.

mid-lines in the forearm [23]. Furthermore, these character-
istics did not alter significantly across arm posture changes
tested in this study. We utilized this feature to develop a myo-
electric interface for a robotic glove that augments the user’s
power grasping force. By designing the interface to react only
to high amplitude myoelectric signals of the MTJs, human
movement patterns other than high-force power grasping, such
as a delicate manipulation or wrist flexion up to the MVC
level, can be rejected. This property enables reliable control
of a hand exoskeleton. Here, we quantitatively demonstrated
that sensing myoelectric signals from a single sensor on the
MTJs has clear advantages over using multiple sensors around
the proximal forearm when identifying power grasp inten-
tions. Exploiting the observed unique feature of the MTJs,
we further propose two myoelectric control methods—Dual-
threshold control (DTC) and Morse-code control (MCC)—for
the myoelectric interface in a robotic glove, Exo-Glove Power
(EGPO; Fig. 2). DTC enables direct co-operation between the
user and the robot, even under muscle fatigue. MCC allows
the user to send various commands to the device by means of
distinct sequences of binary inputs of power grasps.

II. EXPERIMENTAL EVALUATION

The objective of this section is to evaluate the performance
of identifying power grasp intentions with a single sensor
on the MTJs of the FDS (Fig. 1). The study was approved
by the Seoul National University Institutional Review Board
(IRB No. 1903/001-002, 1911/003-020). All experiments were
conducted by following the approved protocol.

A. Methods for Myoelectric Data Acquisition

1) The Location of the MTJs: A medical doctor created a
protocol for identifying the location of the MTJs of the FDS.
According to the protocol, we palpated the volar side of the
distal forearm to find the proximal margin of the rope-like,
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Fig. 3. Experimental design and preliminary evaluation. (A) Sensor locations. The classifiers were trained with the myoelectric signals from (i) one sensor
on the MTJs of the FDS (1-MTJ) and (ii) five sensors around the proximal forearm (5-PF). (B) Three arm postures and six hand/wrist motions. Four sets
from arm posture P1 were used to train the classifier, and two sets from each arm posture P1, P2, and P3 were used to test the classifier. All the motions
were performed at the MVC level. (C) RMS values of the EMG signals from the MTJs of the FDS across all eight participants (n = 8, mean ± SD, total 80
sets). Bars are means, error bars denote SDs, ns denotes no statistical significance, and double asterisks denote statistical significance (P < 0.01).

multiple tendinous structures, which ranged typically between
4–8 cm from the wrist crease. The area around this margin
was defined as the MTJs of the FDS in this study (Fig. 1).

2) Experiment Design: Eight healthy subjects (n = 8; five
males and three females; age, 24.9 ± 0.6 y, mean ± SD) par-
ticipated in the experiment. Six EMG sensors (Trigno Avanti,
Delsys, USA) were attached to the forearm muscles target-
ing the following: (i) MTJs of the FDS, (ii) mid-lines of the
flexor digitorum profundus and flexor carpi ulnaris, (iii) mid-
line of the brachioradialis, (iv) mid-lines of the FDS and flexor
carpi radialis, (v) mid-lines of the extensor carpi radialis bre-
vis and extensor carpi radialis longus, and (vi) mid-line of
the extensor digitorum (Fig. 3A). Each participant was asked
to maintain six different motions—finger extension, power
grasp, wrist extension, wrist flexion, ulnar deviation, and radial
deviation—at the MVC level for 3 s (Fig. 3B). Participants
used a hand gripper when performing power grasps. During
the wrist motions, we instructed the participants not to make a
fist to prevent unintended power grasping. An external struc-
ture was used to constrain the wrist to let the participants
perform the wrist motions at the MVC level. Participants were
asked to perform the tasks under three different arm postures—
humerus hanging at the side, forearm horizontal (P1), straight
arm reaching forward (P2), and straight arm reaching down-
ward (P3). We collected six, two, and two sets of motion
data for P1, P2, and P3, respectively, (Fig. 3B). The orders
of both the postures and motions were randomized. The rest
phases between each motion and each set were 3 and 10 min,
respectively.

3) Signal Processing: The EMG signals were sampled at a
frequency of 1,000 Hz. The data was filtered using a fourth-
order Butterworth filter between 20 and 450 Hz to remove
motion artifacts and high-frequency noise [24]. The motions
were defined as ‘intended’ when the EMG signals from any of
the six sensors were outside the double of the SD ranges of the
relaxed muscle signals [24]. The mean absolute values (MAV),
zero crossings (ZC), waveform lengths (WL), and slope sign
changes (SSC) were calculated from the pre-processed EMG
data with a window length of 250 ms and a step time of 50 ms
(equation provided in the Appendix) [25]–[27].

B. Preliminary Evaluation

The root mean square (RMS) of the EMG data during six
hand/wrist motions across three arm postures are presented
in Fig. 3C. The RMS values of the signals from the MTJs
during power grasping at the MVC level were 0.2874 ±
0.0661 mV for arm posture P1, 0.2895 ± 0.0692 mV for
P2, and 0.2984 ± 0.0553 mV for P3 (n = 8, mean ±
SD, total 80 sets). We observed that the RMS values of
power grasping show statistically significant differences from
those of other motions (unpaired t test, P < 0.01). This
result clearly shows that the myoelectric signal amplitude
(from the MTJs) jumps only when a power grasp is intended,
and the tendency is maintained during arm posture changes.
Based on the observation, we evaluated the performance
of intention classification with the myoelectric signals from
the MTJs.
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TABLE I
HYPERPARAMETER SETTINGS TO TRAIN SVM

C. Methods for Identifying Power Grasp Intentions

1) Classifier Design: Two support vector machine (SVM)
classifiers were trained to distinguish the power grasp intention
from other intended motions. One classifier was trained with
the signals only from the MTJs of the FDS (1-MTJ), and the
other classifier used signals from five sensors on the proximal
forearm (5-PF). The features extracted for training the SVM
classifier were the MAV, ZC, WL, and SSC [25]–[28]. The
features were extracted from a 250 ms temporal window with
a step time of 50 ms. To train the SVM classifier, Scikit-
learn (a Python library for machine learning and data analysis)
was used. In the library, the svm.SVC function was used for
classifying grasping and non-grasping intention labels. Four
datasets from arm posture P1 were used as training datasets.
The training data was fed into the SVM classifier after being
normalized by the min–max scaling, and the trained model
was used to evaluate the test datasets composed of two sets
from each of the three different arm postures (P1, P2, and P3).
Detailed parameter settings are listed in Table I.

2) Metrics for Evaluation: Sensitivity and specificity
were used for evaluating the identification performance,
which are statistical measurements of binary classification
performance [29]. To quantify sensitivity, we defined the
true positive rate for grasping (TPRG), indicating how well
the system detects true grasping activations. To quantify
specificity, we defined the true negative rate for grasping
(TNRG), indicating how well the system rejects false grasping
activations. TPRG and TNRG are calculated as follows:

TPRG = P
(
predgrasping | truegrasping

)
(1)

TNRG = P
(
prednon−grasping | truenon−grasping

)
(2)

where pred refers to the predicted intention label, and true is
the ground truth intention label.

D. Results

1) TPRG—Detection of Power Grasp Intentions: The sen-
sitivity of 1-MTJ was compared with that of 5-PF for three
different arm postures. For the arm posture P1, TPRGs mea-
sured using 1-MTJ and 5-PF were 88.19 ± 2.06% and 88.37
± 2.96%, respectively (mean ± SEM; Fig. 4). For P2, TPRGs
by 1-MTJ and 5-PF were 82.63 ± 1.85% and 78.55 ± 9.77%,
respectively, and for P3, TPRGs by 1-MTJ and 5-PF were
85.99 ± 2.88% and 79.56 ± 9.75%, respectively, (mean ±
SEM; Fig. 4). For any of the three arm postures (P1, P2, and
P3), TPRGs by 1-MTJ did not show a statistically significant
difference with the TPRGs by 5-PF (paired t test, P > 0.05).

Fig. 4. Evaluation of the power grasp intention identification performance.
Performance of the SVM classifiers; 5-PF used five sensors on the proximal
forearm, and 1-MTJ used one sensor on the MTJs of the FDS. TPRG, true
positive rate for grasping; TNRG, true negative rate for grasping. Bars are
means, error bars represent SEMs, and asterisks denote statistical significance;
P < 0.05.

2) TNRG—Rejection of Other Intentions: When using pow-
ered exoskeletons, prevention and rejection of unintended
operations are the top priorities because any unintended opera-
tion of the robot could hinder the intended operation or injure
the user [19]. The specificity of 1-MTJ was compared with
that of 5-PF for the three arm postures. For the arm posture
P1, TNRGs measured using 1-MTJ and 5-PF were 99.16 ±
0.26% and 94.02 ± 2.76%, respectively, which did not show
a statistically significant difference (mean ± SEM; paired t
test, P = 0.1126; Fig. 4). For P2, TNRGs by 1-MTJ and
5-PF were 99.69 ± 0.10% and 95.09 ± 1.89%, respectively,
which showed statistically significant differences (mean ±
SEM; paired t test, P = 0.0477; Fig. 4). For P3, TNRGs
by 1-MTJ and 5-PF were 99.51 ± 0.26% and 93.64 ± 2.48%,
respectively, which showed statistically significant differences
(mean ± SEM; paired t test, P = 0.0398; Fig. 4).

In all three arm positions (P1, P2, P3) the means of TNRGs
by 1-MTJ were higher than the means of TNRGs by 5-PF. In
particular, when the arm posture changed from P1 to P2 or P3,
the differences became statistically significant; 1-MTJ is better
than 5-PF in rejecting movements other than power grasping
under various arm postures. The observed higher specificity of
1-MTJ indicates that, in identifying power grasp intentions, a
single sensor placed on the MTJs of the FDS performs more
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Fig. 5. System Design. (A) Hardware structure of Exo-Glove Power. The robotic glove does not restrict wrist motions. (B) Glove part structure. The
differential mechanism from the tendon routing allowed the robotic glove to adapt when grasping objects of various shapes. (C) Structure of the slack-enabling
actuator.

robustly than multiple sensors placed on the muscle mid-lines
in actual activities involving changes in arm postures.

3) Feature Reduction: The characteristics of the myo-
electric signals could differ from person to person and
could also be affected by muscle conditions, such as muscle
fatigue [30], [31]. One way to address these challenges is to
reduce the number of extracted features and handle the charac-
teristic change with proper methods. Since our initial approach
was based on the myoelectric signal amplitude jumps during
power grasps, we additionally trained an SVM classifier with
the signals from the MTJs of the FDS using only one fea-
ture, the MAV. With this approach, TPRGs for arm posture
P1, P2, and P3 became 90.99 ± 1.84%, 85.37 ± 1.62%, and
91.08 ± 1.32%, respectively, and TNRGs for arm posture P1,
P2, and P3 became 97.21 ± 1.386%, 98.63 ± 0.78%, and
98.51 ± 0.72%, respectively (mean ± SEM; Fig. 4). The dif-
ference between the original performance of the 1-MTJ using
all four features and the performance with this feature reduc-
tion was not statistically significant, except the TPRG for P3
(P = 0.0458).

Based on the result, we devised two single sensor-driven
myoelectric control strategies that utilize only the MAVs of
the myoelectric signals from the MTJs of the FDS, which is
introduced in Section IV. The following section (Section III)
explains the robotic glove into which we implemented the
devised myoelectric control strategies.

III. SYSTEM DESIGN

A. Design of the Robotic Glove

A robotic glove, EGPO, with a myoelectric interface,
was developed to demonstrate the devised myoelectric con-
trol methods. EGPO has a built-in EMG sensor (13-E200,
Ottobock, Germany) that could be attached and fastened to
the MTJs of the FDS. The hardware composition of EGPO
is shown in Fig. 5. The tendon paths were reinforced with
flexible metal components and anchored by webbing straps to
enable high force transmission (Fig. 5B); the paths follow our
previous robotic gloves developed for patients [32], [33]. The
robot, including the actuator and battery, weighed 450 g (the
glove only, 32 g), and was designed to fit inside an external
protective glove. Users could freely move their wrists at the
maximum range of motion while wearing the robotic glove
(Fig. 5A).

B. Actuation Unit

A slack-enabling actuator was developed to prevent ten-
dons around the spool from derailing when the tendons are
not under tension. The previous version of the slack-enabling
actuator was bulky due to its complicated structure and could
not be mounted on the forearm [34]. To make EGPO portable,
the spring-type jamming mechanism was replaced with feeders
with a silicon cover (Fig. 5C). All the electrical components
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Fig. 6. Assistance profile of Exo-Glove Power (EGPO). The participant
grasped a gripper with (i) the bare hand (gray) and (ii) EGPO (red) for ten
trials each. During the 15 s of the experiment, EGPO provided 34.45 N of
grasp force on average. The solid lines and error bands indicate the profiles
of the means and SDs, respectively.

and the actuator (2232SR, Faulhaber, Switzerland) were placed
on the forearm sleeve, close to the elbow, to reduce the effect
of the inertia of the device on the arm movements.

C. Assistance Profile

To measure the assistive force provided by EGPO, experi-
ments were performed on a single participant (n = 1; female;
age, 26 y). The dimensions of the participant’s hand were as
follows: the index finger 84 mm, middle finger 95 mm (from
the metacarpal joint to each fingertip), and the hand length
175 mm (from the tip of the middle finger to the base of the
palm). A load cell (333FDX, Ktoyo, Korea) was enclosed in a
3D-printed gripper, and the length between the finger contact
locations was 52 mm. The participant was asked to monitor
the MAVs of EMG signals from the MTJs and maintain the
MAVs while power grasping the gripper at the MVC level
for 15 s. The participant performed ten sets of the aforemen-
tioned task, and each set comprised one trial with assistance
from the robotic glove and one trial with the bare hand. Per
each set, the order of the two trials was randomized. The rest
phases between each trial and each set were 15 and 30 min,
respectively. Five sets were performed on the first day of the
experiment, and five additional sets were performed the next
day. The force data was measured at a sampling frequency of
10 Hz. The wrist was kept in a neutral position in all trials.
The results are presented in Fig. 6, and the mean assistive
grasp force provided by the glove was 34.45 N (unpaired t
test, P < 0.001).

IV. SINGLE SENSOR-DRIVEN MYOELECTRIC CONTROL

A. Dual-Threshold Control

The role of EGPO is to assist the grasp force while the user
intends a firm power grasp to secure an object (Supplementary
Movie S1). A simple way to intuitively activate the robotic
glove is to actuate the robot while the MAV exceeds a certain
threshold. However, the forearm muscles fatigue fast during
secure grasps [35], and the signal characteristics, including the
MAV, can easily change as the user performs a long-durational
power grasp. The increase in the MAVs will not deactivate
the robot, but the decrease in the MAVs may deactivate the
robot contrary to the user’s intention. Therefore, we set a

Fig. 7. Overview of the single sensor-driven myoelectric control strategies.
Dual-threshold control (DTC) enables direct co-operation between the user
and the robot, and Morse-code control (MCC) allows the user to send various
commands to the device by means of distinct sequences of binary inputs of
power grasps.

deactivation threshold separately from the activation threshold
(Fig. 7). We implemented this control method in EGPO and
validated its performance in practical operations that include a
discrete/continuous grasping task (lifting a heavy bag, 15 kg)
and a rhythmic/repetitive grasping task with dynamic arm
movements (pulling a rope connected to a 15 kg bag).

1) Design of Dual-Threshold Control (DTC): Myoelectric
signals were sampled at a rate of 500 Hz from the EMG sen-
sor in EGPO (13-E200, Ottobock, Germany). The MAVs of
the myoelectric signals were extracted from a 250 ms window
with a step time of 200 ms using a microprocessor (Teensy
3.2, PJRC, USA). Two thresholds were set for activation and
deactivation (Fig. 7). We determined these thresholds with two
parameters: α and β. The activation threshold was set α %
higher than the maximum MAVs of the signals when the other
motions were performed at the full range or at the MVC level.
In this study, we set α as 50. Increasing α will activate the
robot at stronger grasping intentions. Note that the activation
threshold should be set lower than the MVC level of power
grasping. The deactivation threshold was set β % lower than
the activation threshold to prevent unintended deactivation due
to the gradual decrease in MAVs of the signal, e.g., by mus-
cle fatigue. Here, we set β as 90. Lowering β will deactivate
the robot faster when releasing is intended, but this will also
make the robot less robust against muscle fatigue; the thresh-
old values should be set according to the usage situation of
the robotic glove. Therefore, EGPO was built with buttons to
regulate the threshold values. When the MAVs of the signals
exceeded the activation threshold or fell below the deactiva-
tion threshold, commands for motor control were transmitted
to a motor driver (MCDC3002 S CO, Faulhaber, Switzerland).
An OLED screen was used to display the MAV, robot status,
and threshold values.

2) Human Subject Experiment I: The objective of this
experiment was to monitor the performance of DTC in
detecting the user’s intention of power grasping in practi-
cal operations that include a discrete/continuous grasping task
and a rhythmic/repetitive grasping task with dynamic arm
movements. A single participant (n = 1; male; age, 38 y)
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Fig. 8. Human subject testing of dual-threshold control. One healthy subject
(n = 1; male fire fighter; age, 38 y) participated in this experiment. The
participant was neither trained to use EGPO prior to the experiments nor
instructed to perform a power grasp.

equipped with EGPO and a protective glove was asked to
perform the aforementioned tasks (Fig. 8). An LED bar was
attached to the outer side of the glove and lit while EGPO was
activated. The participant was neither trained to use EGPO
prior to the experiments nor instructed to perform a power
grasp. A camcorder recorded the scene during the task. The
participant activated EGPO by clenching his fist before con-
ducting each task to synchronize the video recordings with the
MAVs of the myoelectric signals. While performing each task,
EMG data and robot activation levels were recorded. During
15 s of the continuous grasping task in which the participant
should grasp and hold a heavy bag, the robot was activated
for 98.89% of the period (Fig. 9A, Supplementary Movie S2).
The robot was activated 170 ms after grasping and deacti-
vated 130 ms after releasing. Between the initial grasping and
releasing, the robot maintained actuation. While the participant
repetitively pulled the rope for 10 s, the robot activated 152
± 82 ms after grasping and deactivated 160 ± 71 ms after
releasing (mean ± SD; Fig. 9B, Supplementary Movie S3).
Twenty more trials of the repetitive grasping task are included
in Supplementary Movie S3; EGPO was successfully activated
for all grasping trials. This result shows that DTC is effective
for dynamic arm movements as well as long-durational use.

3) Human Subject Experiment II: The objective of this
experiment was to evaluate the robustness of DTC across
multiple users. Three healthy subjects participated in this
experiment (n = 3; two males and one female; age, 27 ±
0.67 y, mean ± SD). The participants fastened the myoelec-
tric interface of EGPO themselves according to the protocol
introduced in Section II-A1 and performed 10 sets of two
motions, PG and WF, for 3 s at the MVC level with three dif-
ferent arm postures (P1, P2, and P3) in a randomized order.
WF was selected as the representative motion other than PG
because WF resulted in the highest MAV among 5 motions

Fig. 9. Dual-threshold control during operations. (A) Continuous grasping.
(B) Repetitive grasping. Gray shaded area indicate true grasping intentions.

TABLE II
ROBUSTNESS OF DUAL-THRESHOLD CONTROL

other than PG (Fig. 3C). We collected EMG data and checked
whether EGPO was activated during each set. The results are
tabulated in Table II; EGPO was activated for all PG trials and
deactivated for all WF trials for all three participants and all
three arm postures.

B. Morse-Code Control

The myoelectric interface with DTC can provide intuitive
on/off binary control commands since it can reliably identify
power grasp intentions. However, the users may often need
to send various command options for efficient operations: a
command to enter a ‘permanent assist mode’ to lift an object
for a long time with no effort, a command for turning off the
assist mode temporarily, or a command for activating other
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Fig. 10. Morse-code control. (A) Entering ‘permanent assist mode’ with command “SLS.” EGPO maintains actuation although the user’s hand is at rest.
(B) Exiting ‘permanent assist mode’ with command “SSS.” The full process is shown in Supplementary Movie S4. “S” stands for short grasping. “L” stands
for long-durational grasping.

exoskeletons. To send multiple commands with a binary identi-
fier, we used a control method inspired by Morse code (Fig. 7).
By commanding with sequences of two different power grasp
durations, which are dots and dashes in Morse code, users
can send multiple commands with binary inputs. Performing
a short grasp, which makes the MAV exceed a certain thresh-
old for a short period of time, could act as a dot (“S” for short
grasp), and a long holding grasp could act as a dash (“L” for
long holding grasp).

1) Design of Morse-Code Control (MCC): The MAVs of
the myoelectric signals were extracted from a 250 ms window
with a step time of 50 ms. To actualize MCC in a myoelectric
interface, a timer was set to classify “S” (for a dot) and “L”
(for a dash) grasping inputs for each sequence. If the MAV of
the myoelectric signal exceeds a certain threshold, the timer
starts and monitors the MAV during each tick whose interval
is 350 ms. If a short-durational power grasp is performed so
that the MAV drops below the threshold before or during the
second tick, this action will be classified as “S” (dot). Holding
a long-durational power grasp, which makes the MAV drop
below the threshold during the third tick, will be classified
as “L” (dash) (Fig. 10). After collecting three sequences, the
interface determines the command that the user intends.

The command to enter and exit ‘permanent assist mode’ was
realized in EGPO by using three sequences of inputs. Each
command requires a different level of effort in execution; the
“SSS” command will be the easiest to execute, and the com-
mands that combine “S” and “L” commands will be more
effortful. However, the “SSS” command can be accidentally
sent to the robot when the user does rhythmic/repetitive
grasping quickly. Therefore, to avoid unintended operations,

the sequence for initiating a specific mode should require some
effort; we selected “SLS” for the commands to enter the per-
manent assist mode (Fig. 10A), and “SSS” to exit the mode
(Fig. 10B).

2) Human Subject Experiment: The process of entering and
exiting the ‘permanent assist mode’ is demonstrated in Fig. 10
and Supplementary Movie S4. The objective of the experiment
was to evaluate the success rate (the number of successful
executions out of the total number of trials) of MCC across
multiple users, and six healthy subjects were recruited for this
experiment (n = 6; four males and two females; age, 26.83
± 0.90 y, mean ± SD). Each participant performed 20 trials
for command “SSS” and “SLS”, respectively, in a randomized
order. The overall success rate was 91.67 ± 4.71% for com-
mand “SSS” and 73.33 ± 14.34% for command “SLS.” The
success rates of each participant are tabulated in Table III. For
each of the “SSS” and “SLS” tasks, the total number of trials
was 120 (six participants; 20 trials). Out of the 120 trials, the
participants failed to command “SSS” and “SLS” in 10 and
32 trials, respectively. In all the 10 trials in which the partic-
ipants failed to execute “SSS”, the controller terminated the
recognition process without misclassifying the users intention.
In contrast, among the 32 trials in which the participants failed
to execute “SLS”, the controller classified the intended signals
as “SSS” in 11 trials and terminated the recognition process
in 21 trials.

V. DISCUSSION

In this study, we exploited the unique anatomical feature
of the MTJs and further devised two single-sensor based
myoelectric control strategies for a robotic glove (Fig. 7).
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TABLE III
SUCCESS RATE OF MORSE-CODE CONTROL

The compactness and reliability of the control interface facil-
itate high wearability and safe operation, whose absence has
long hampered the practical use of myoelectric interfaces in
hand exoskeletons. We highlighted the effectiveness of the
myoelectric interface by implementing it into a robotic glove
and presenting its performance in practical operations. DTC
enables direct co-operation between the user and the robot,
and MCC provides various command options for the user.

Although robotic gloves can utilize force-sensors located
on the fingertips to detect firm grasping intentions when aug-
menting grasp force [36], [37], unintended actuation can occur
when fingers are in contact with an object without flexion,
such as in the case of pushing heavy doors with open hands.
Also, the electrical components on the glove’s contact point
have a risk of impairment when the user vigorously inter-
acts with the object in a harsh environment. On the other
hand, a grasp-related intention detection method based on the
kinematics of the hand (e.g., bending sensors on the fingers)
may be an alternative, but this method also has limitations
for interpreting the force-levels of intended actions. Actions
such as shaking hands or holding a pen require delicate and
precise grasping, but an augmented grasp force in these situa-
tions could hinder the intended actions. These limitations are
inevitable as long as the controller determines robotic actu-
ation based only on the circumstantial information about the
mechanical interaction between the user and an object, without
considering the actual human intention. The proposed method
circumvents these issues by removing all the electrical com-
ponents from the glove and interpreting human intention from
biological signals.

Unlike pattern recognition-based classifiers, the presented
myoelectric control methods do not require multiple classifier
training sets prior to the individual use of the robotic glove.
Only a simple process of adjusting the threshold values for
each user is required. Still, as shown in Section II, a pat-
tern recognition-based classifier is an alternative method to
DTC and has the potential for providing better performance,
for example, by auto-calibrating the threshold parameters.
In addition, since MCC decodes the patterns of grasping
inputs with different duration, applying machine intelligence
to MCC could provide higher accuracy in decoding intended
commands.

We expect that reducing the number of required sensors to
one can considerably facilitate the practical use of myoelectric
interfaces in exoskeletons. Each human has different mus-
cle sizes and configurations; therefore, locating EMG sensors
on each individual’s muscles requires a cumbersome process
of customization. The development of a single sensor-based
myoelectric interface substantially simplifies this process of
location selection. However, the users are still required to
locate a single sensor on the MTJs’ ideal area, which is dif-
ficult to define precisely. Although the three participants in
Section IV-A3 all succeeded in locating the EMG sensor on
the functional area by following the protocol introduced in
Section II-A1, better methods for finding the ideal electrode
location might be developed in future studies to accelerate the
practical use of the proposed system. For example, a com-
puter vision-based automatic fitting system for the interface
(or the whole robot) could be a potential solution for this
limitation.

Before actually deploying the proposed system to end-users,
several issues should be considered in prior. DTC theoret-
ically rejects the effect of muscle fatigue, and we showed
its performance with a single subject experiment. However,
experiments with multiple human subjects and with a longer
duration should be performed to examine the effects of mus-
cle fatigue in DTC. Additionally, some participants showed
a low success rate in executing command “SLS” for MCC
(Table III; S2 and S5). We speculate that these participants
struggled to keep the rhythmic timing of grasping inputs due
to the lack of rhythm perception, the capacity to synchro-
nize voluntary movements with the predicted future beats
in a rhythmic sequence [38]. Whether a long-term practice
and/or optimization of the static parameters can increase the
decoding accuracy of MCC might be addressed in future
studies.

There are also a few issues left in the aspect of using
a myoelectric interface. We used commercial EMG sensors
(Delsys and Ottobock) and did not evaluate the effects of
the electrode size in the controller performance. Furthermore,
the fastening structure for the EMG sensor should be
improved for long-term use of the interface because any
perturbed force on the current fastening structure could
cause electrode shifts, which may deteriorate the controller
performance.

In this study, we discovered one location over the MTJs,
where the intention of generating a high grasp force could
be robustly identified without being interfered by signals from
other muscles. The MTJs of other muscles may also tentatively
contribute to developing a compact and effective interface for
exoskeletons and exosuits. For example, a runner’s intention
to sprint may be reliably detected by a sensor located on the
MTJ of a major lower limb muscle.

APPENDIX

EQUATIONS FOR FEATURE EXTRACTION

The detailed guideline for feature extraction is introduced
in Hudgins et al. [28].
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A. Mean Absolute Value (MAV)

The MAV of signal x in the window was calculated as
follows:

MAV = 1

N

N∑

k=1

|xk|

where N denotes the number of samples in the time window
and xk denotes the kth sample.

B. Zero Crossing (ZC)

This feature is the number of times signal x crosses zero
within the window. To avoid signal crossing counts due to
low-level noise, a threshold was included. The ZC of signal x
in the window was calculated as follows:

ZC = 1

N

N−1∑

k=1

fk,

fk =
{

1, xkxk+1 < 0, |xk − xk+1| > xth

0, else

where N denotes the number of samples in the time window,
xk denotes the kth sample, and xth denotes the threshold. In
this study, we set xth as 0.015 V [27].

C. Waveform Length (WL)

This feature provides a measure of the complexity of signal
x. It is defined as the cumulative length of the signal within
the window. The WL of signal x in the window was calculated
as follows:

WL = 1

N

N−1∑

k=1

|xk+1 − xk|

where N denotes the number of samples in the time window
and xk denotes the kth sample.

D. Slope Sign Change (SSC)

This feature is related to signal frequency and is defined as
the number of times the slopes of signal x change sign within
the window. To avoid noise-induced counts, a count threshold
was used. The SSC of signal x in the window was calculated
as follows:

SSC = 1

N

N−1∑

k=1

fk,

fk =
⎧
⎨

⎩

1,
[
(xk > xk−1, xk > xk+1) or (xk < xk−1, xk < xk+1)

]

and
[
(|xk − xk−1| > xth) or (|xk − xk+1| > xth)

]

0, else

where N denotes the number of samples in the time window,
xk denotes the kth sample, and xth denotes the threshold. In
this study, we set xth as 0.015 V [27].
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