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Abstract

Soft robots have been extensively researched due to their flexible, deformable, and adaptive
characteristics. However, compared to rigid robots, soft robots have issues in modeling, cali-
bration, and control in that the innate characteristics of the soft materials can cause complex
behaviors due to non-linearity and hysteresis. To overcome these limitations, recent studies
have applied various approaches based on machine learning. This paper presents existing
machine learning techniques in the soft robotic fields and categorizes the implementation of
machine learning approaches in different soft robotic applications, which include soft sen-
sors, soft actuators, and applications such as soft wearable robots. An analysis of the trends
of different machine learning approaches with respect to different types of soft robot applica-
tions is presented; in addition to the current limitations in the research field, followed by a
summary of the existing machine learning methods for soft robots.

1. Introduction

Soft robots have been extensively researched with respect to various research fields [1, 2].
These robots have advantages over robots made of rigid materials due to their flexibility, com-
pliance, and adaptability to the surrounding environments [3]. Examples of their applications
include soft grippers for handling fragile or delicate objects [4, 5] and mechanoreceptive or
proprioceptive sensing for robot using soft sensors [6, 7]. Moreover, they are often worn on
human bodies for human-robot interactions to enable safe and comfortable assistance and
interaction due to their compliant structures [8, 9]. Several studies combined soft sensors and
soft actuators to perform complex tasks like robot perception [10].

In spite of the advantages of soft robots, there exist common limitations in modeling, cali-
bration, or control since the structural compliance and the viscoelasticity in the material
results in complex and unpredictable behaviors due to non-linearity [8, 11, 12] and hysteresis
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Table 1. Research with respect to hardware types

[11, 13]. Non-linearity indicates that the relationship between the system input and the output
cannot be represented by a simple linear relationship. Hysteresis can be defined as a time-
dependent behavior typically shown as an output discrepancy during loading and unloading
cycles. There are additional drawbacks, which include creep, drift, and high degrees-of-free-
dom (DOF) that increase hysteresis thus contributing to the complexity of the robot behaviors.
These make it difficult to mathematically model soft grippers and calibrate soft sensors, limit-
ing the applications of soft robotics.

A potential solution to the aforementioned drawbacks is implementation of machine learn-
ing techniques. It is well known that machine learning algorithms are effective in solving non-
linear problems in various fields [14-16], and they have recently been used to solve problems
related to soft robots. In particular, the applications include soft sensor calibrations [17, 18],
positioning control of soft actuators [19, 20], and more complex tasks, such as grasping [21,
22] or motion planning of robots [23, 24]. Based on the studies, the use of machine learning-
based methods has successfully addressed the current limitations of soft robots.

This paper presents and analyzes existing machine learning methods in the soft robotics. It
aims to present an overview, analyze the current trend, and discuss current limitations of
machine learning algorithms in soft robotics. Relevant studies on soft sensors and soft actua-
tors are presented, followed by the implementation of integrated soft systems in various appli-
cations such as wearable devices, grippers, and manipulators. Furthermore, a discussion on
the remaining limitations is presented, followed by the conclusion of the study.

1.1 Backgrounds

This study categorizes machine learning methods in soft robotics into two sections: Sensors in
soft robotics and Actuators in soft robotics. The Sensors section introduces calibration and
characterization methods using machine learning (2.1.1 Sensor calibration and characteriza-
tion), and practical applications, such as obtaining tactile or human posture information (2.1.2
Sensing in practical uses). The Actuators section includes static/dynamic modeling and control
of soft pneumatic actuators (2.2.1), cable-driven actuators (2.2.2), and Electroactive polymers
and shape memory alloys (2.2.3). In section 2.2.4 Actuators in practical uses, such as wearable
devices and manipulators, are introduced. Recent studies with respect to hardware types and
tasks are categorized in Table 1, and the terminologies and abbreviations used in the paper are
presented in Table 2.

Fig 1 overviews machine learning methods used throughout the papers. In sensor-related
studies, supervised learning methods such as k-nearest neighbors (kNN), support vector
machine (SVM), and supervised deep learning models are mainly employed. Given that these

and tasks.

Sensors Category Soft Pressure Sensor Soft Strain Sensor
Soft Pressure Sensor Array
Sensor characterization/ calibration [17, 18, 50-53] [49, 54]
Sensing in practical uses [25, 26, 32, 53, 56-60] [61, 66-68],
Actuators Category Soft Pneumatic Actuators (SPAs) Cable-Driven Mechanism (CDM) Others (EAP, SMA, etc)

Statics/dynamics modeling (proprioception)
Model-based control strategy
Model-free control strategy

Actuators in practical uses

https://doi.org/10.1371/journal.pone.0246102.t001

[10, 19, 20, 82, 84] [102-105] [114]
[85-93] [109] [24]
[83, 94, 96-98] [100, 106-108] [62,111-113]

[101, 115-117]
[23, 118-126]

Soft wearable devices

Soft manipulators and grippers
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Table 2. Terminology and corresponding abbreviations.

Terminology Abbreviation
k-Nearest Neighbors kNN
Support Vector Machine SVM
Decision Tree DT
Gaussian Process GP
Gaussian Mixture Model GMM
Gaussian Mixture Regression GMR
Hidden Markov Model HMM
Feedforward Neural Network FF
Multi-layer Perceptron MLP
Convolutional Neural Network CNN
Recurrent Neural Network RNN
Long Short-Term Memory LSTM
Autoencoder AE
Generative Adversarial Network GAN

https://doi.org/10.1371/journal.pone.0246102.1002

algorithms are generally employed for classification, they can be used to distinguish different
objects in contact. For the calibration of current soft sensors, a recurrent neural network
(RNN), a deep learning algorithm specialized in time-series data, are frequently employed. For
sensors that have two-dimensional array data types, such as e-skin, a convolutional neural net-
work (CNN), an effective deep learning algorithms for image processing, has been used, for
tasks such as classification of contact objects [25] or hardness estimation by combining with

an LSTM network [26].

Moreover, several reinforcement learning algorithms have been employed in studies for
actuators, grippers, and manipulators. Based on the surveyed studies related to those applica-
tions, the main objectives of machine learning are to perceive the position of the devices and
to control them to the desired positions. To accomplish such tasks, some papers have used
reinforcement learning algorithms to control the robots. Reinforcement learning algorithms
are to develop strategies or policies to learn the expected behaviors by designing reward func-
tions. The existing studies have proposed new reward functions that are suitable for the target
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Fig 1. Chart for learning techniques. (A) Sensors, (B) Actuators.
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https://doi.org/10.1371/journal.pone.0246102.9001
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Table 3. Research with respect to algorithms.
Learning Type

Sensors Supervised Learning

Unsupervised Learning

Actuators Supervised Learning

Reinforcem

https://doi.org/10.1371/journal.pone.0246102.t003

Algorithms Paper Lists
kNN [17, 49, 59]
SVM [49, 58, 59]
DT [49]
GP [49, 59]
LR [49]
FF [17, 49-54, 58, 61, 66-68]
CNN [25, 26, 32, 56, 59, 60, 68]
RNN [17, 18, 26, 58, 66-68]
AE [55, 60, 67]
GAN (68]
kNN [21, 117]
GP [24, 84, 89, 90]
LR [19, 20, 83,91, 117]
FF [19, 20, 23, 62, 82, 85-88, 93, 94, 98, 101-105, 109, 112, 115-118, 125, 126]
CNN (22,92, 116]
RNN [10, 101, 106, 108, 114, 116, 124, 126]
ent Learning [82, 94, 97,98, 100, 107, 109, 112, 113, 117]

robots. To acquire state information of the robots, vision sensors, like a camera or Vicon, have
been frequently utilized.

Opverall, it should be noted that several studies utilized deep learning-based approaches.
These studies reported that deep learning models can successfully address the existing issues of
soft robots, such as non-linearity and hysteresis, and showed that the learning-based
approaches had better performances compared to non-deep-learning-based approaches. How-
ever, a limited number of studies have been conducted based on unsupervised learning in the
soft robotics research field, unlike other fields wherein unsupervised learning methods such as
autoencoders and generative adversarial networks are widely implemented. The studies ana-
lyzed with respect to the employed algorithms are presented in Table 3.

2. Materials and methods
2.1 Sensors in soft robotics

Soft sensors have been intensively studied as one of the crucial technologies in soft robotics to
enhance the perceptivity and adaptability of robots to their surroundings by estimating
mechanical stimuli and deformations similar to mechanoreceptors or proprioceptors in biol-
ogy. Various soft sensors have been developed by embedding different types of electrically con-
ductive fillers such as liquid conductors (liquid metal [27, 28], ionic liquid [29, 30]),
nanomaterials (nanotube [31, 32], nanowires [33, 34], nanocomposites [35, 36]), and conduc-
tive fabrics [37, 38] into soft structures composed of elastomers. Consequently, soft sensors
can detect large deformations such as strain, curvature, and compression by measuring electri-
cal changes of the fillers such as the resistance [39, 40] and capacitance [41, 42].

A major limitation when using soft sensors is the complexity of their characterization and
calibration. This is caused by the hyper-elastic characteristics of soft materials cause non-lin-
earity, large hysteresis, creep, and drift, resulting in generating unexpected physical behavior
and electrical responses of soft sensors. These drawbacks make use of soft sensors more diffi-
cult than that of traditional sensors. Therefore, several studies have been conducted to find
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solutions through the modifications of hardware design [43, 44] or based on empirical
approaches to calibrate soft sensors [18].

Moreover, soft sensors have been integrated with other robotics technologies, such as actua-
tors, grippers, manipulators, and wearable devices, to better understand their physical interac-
tions with environments or their own physical states. Soft sensors attached to or embedded in
grippers estimate the magnitudes and locations of contacts. Furthermore, they are not only
able to estimate types of materials and shapes of the gripped objects but also able to detect the
slippage of objects based on the analysis of contact information extracted from post-processed
sensor data. In the cases where array-type soft pressure sensors are used in soft mobile robots
and soft manipulators, they can estimate the positions and motions of the robotic systems as
well as the distribution of interaction forces during contact. When soft sensors are used for
soft wearable devices by attaching to the human body, the sensors estimate body motions such
as upper limb motions, gait, or hand motions without physical resistance due to their softness
and elasticity. These tasks, however, can introduce additional non-linear behaviors to soft sen-
sors due to the non-linearity of human body.

To overcome such limitations and implement better uses of soft sensors, nowadays, learn-
ing-based approaches are actively used as one of the most effective empirical methods.
Machine learning can accurately characterize and calibrate soft sensors by taking into account
their nonlinearity and hysteresis, which are not easily represented using analytical and experi-
mental approaches. Moreover, when multiple or array type soft sensors are used for some pur-
poseful tasks such as estimating body motions and grasping characteristics of interacted
objects, learning based approaches efficiently process massive and non-intuitive datasets from
sensors, to extract meaningful features and information required for completing the tasks. Fig
2 depicts papers that are related to soft sensors and learning-based approaches.

2.1.1 Sensor calibrations and characterizations. The main objective of sensor calibration
is to accurately estimate the physical stimuli such as pressure or strain applied to soft sensors.
However, in the calibration process, a large hysteresis loop of output signals during loading
and unloading cycles increases the complexity of traditional analysis and experimental meth-
ods. Therefore, the hysteresis characteristics have been extensively researched using mathe-
matical models and data-based approaches [45]. The parameters of hysteresis model in the
data-based approaches are generally optimized using a machine learning algorithm as well as
convex optimization methods.

Nowadays, deep learning is widely implemented due to its effectiveness in massive data
processing in research fields, such as computer vision [46] and natural language processing
[47]. With respect to soft sensors, some studies have been also conducted based on deep learn-
ing methods, which have been compared with non-deep-learning methods to evaluate the per-
formances of the proposed model. Navarro et al. used FF and a transfer learning approach to
obtain a contact location and to estimate the corresponding pressure applied to a soft pad and
a kidney-shaped sensor, which are soft pneumatic mechanosensors made of silicone. With the
proposed learning methods, the change of volumes using airflow sensors were measured and
calibrated to estimate magnitudes of applied forces. They compared the estimation results
obtained using the learning-based approaches with those from numerical methods like the
online finite element method. According to the comparison, the neural network model pro-
vided better performances in obtaining contact forces, but the algorithm was not accurate in
unobserved force ranges [48]. Given that sensor data are sequential in time; RNNs, specialized
for time-series data, are considered as a suitable network for the calibration of soft sensors.
Kim et al. proposed methods to estimate the magnitudes and locations of contact forces
applied to soft pressure array sensors based on the Preisach method and ANNs [11]. In the
case of single contact, localization was conducted using a kNN, and a general RNN was used to
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(B) Practical Uses

Information
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Hand Pose [32, 68]
Grasping Stability [55, 56, 58]
Object Recognition [57, 25]
Material Classification [26, 59]
Shape Recognition [60, 67]
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Fig 2. Model Inputs and outputs of soft sensors with machine learning methods. (A) Sensor calibrations and characterizations, (B) Sensing in practical uses.

https://doi.org/10.1371/journal.pone.0246102.9002

extract the temporal characteristics for the analysis of the hysteresis. The performance was
then compared with that of an ANN model that determines the parameters of the Preisach
method. In addition, this study showed that multi-contact localization was possible using only
a simple logic. It also showed that both magnitude estimation and localization of multi-contact
can be conducted with long short-term memory (LSTM), which is a type of RNN that is appli-
cable to long-range dependencies [46], and fully connected layer. In a similar manner, to pre-
dict the magnitude and location of pressure applied to a soft microfluidic pressure sensor, Han
et al. also proposed an RNN model based on LSTM [18]. The non-linearity of soft sensors,
which includes significant hysteresis, was successfully modeled using a RNN that extracts
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temporal features. The outputs from the RNN model were then used as inputs of the fully con-
nected layer to predict both the magnitude and location of the pressure applied to the sensor.

In addition, there are various soft sensors which embed multiple sensing elements in a sin-
gle sensing structure to detect multiple deformation modes, force distribution, or forces in
multi-axes. In these cases, for easier and more efficient calibration processes, machine learning
algorithms have been used as powerful tools. Van Meerbeek et al. employed several learning
methods to calibrate a soft sensing structure embedding with multiple optical fibers [49]. Phys-
ical behaviors such as bending and twisting of the silicone matrix were estimated using kNNs,
SVMs, and decision trees for the classification of deformation types. In addition, kNNs, SVMs,
decision trees, Gaussian processes, linear models, and ANNs were employed as regression
models for the estimation of bending and twisting angles, and the accuracy of each model was
compared. kNN showed the best performance with low average error and model bias. Sohn
et al. developed a macroscale soft pressure array sensor using a multi-walled carbon nanotube/
polydimethylsiloxane (MWCNT-PDMS) composite film, which was of a single-layered piezo-
resistive type [50]. Using a deep learning technique, pressure distribution can be estimated
based on the single-layered simple composite film. For contact localization, a network with
36-dimensional output nodes in three fully connected layers was used, and a network with
one-dimensional output nodes in two fully-connected layers was employed for the magnitude
estimation of the applied pressure. Park et al. also conducted a real-time estimation of contact
force distribution detected via a soft tactile sensor using an electrical impedance tomography
(EIT) sensing method through a DNN [51]. It should be noted that the traditional signal pro-
cessing methods using the linearized models, such as Maxwell’s equation, was limited with
respect to construction accuracy while it showed fast computation time and robustness against
noise. In contrast, the proposed nonlinear EIT algorithm implemented based on the deep neu-
ral network was able to improve both reconstruction accuracy and computation time of EIT
sensing. Chuah et al. developed a soft three-axis force sensing footpad by embedding nine
commercial air pressure sensors in a silicone composite [52]. Given that the complex geometry
of the developed sensors and the use of elastomers limited the analytical modeling of the sen-
sor, the sensor was successfully calibrated with an ANN based on ground truth three-axis force
data collected by the contact between the footpad and three-axis force sensor in various
directions.

To use multiple numbers of sensors or array sensor, each of the individual sensors or sens-
ing units need to be calibrated independently; this consumes lots of memory and network
weights. To mitigate this difficulty, when Sferrazza et al. conducted a study on the reconstruc-
tion of the normal pressure distribution using a vision-based tactile sensor and an FNN [53],
transfer learning was used to transmit the data among multiple sensors. This learning method
was able to reduce training time and efficiently process large dataset, while maintaining supe-
rior sensing performance. Kim et al. also used an optimal transportation transfer learning to
learn the model of soft sensors with large volume [54].

2.1.2 Sensing in practical uses. In the previous section, we introduced studies that effi-
ciently and accurately calibrate soft sensors using machine learning techniques. This section
deals with applications aimed to perform purposeful tasks based on tactile or human-related
information obtained from sensor data other than just calibrating sensors.

First, soft sensors have been widely employed to obtain tactile information, such as single-
or multi-point contact pressure, vibration, during physical interactions with the environment
by mimicking the functionalities and properties of skin. The tasks that involve the use of soft
tactile sensors are not limited to contact localization and magnitude estimations. They also
include extended applications, such as contact stability estimation, object type or shape recog-
nition, and material classification, especially when they are integrated with grippers. Since
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these tasks need to process large and non-intuitive sensing datasets to extract meaningful fea-
tures and required results, various appropriate machine learning techniques have been actively
applied. To recognize objects in contact, classification algorithms such as SVM and kNN are
used. Given that typical soft tactile sensors are composed of multiple sensing nodes like
human skin, the data collected from the sensors are similar to multi-dimension image data.
Hence, a CNN, which is one of the deep learning algorithms that are specialized with respect
to image processing, is generally used.

Roberge et al. conducted a study on the classification of gripping states using a soft pressure
sensing pad, to establish whether contacted objects were stably gripped or subject to slippage
based on magnitude and frequency information of contact force. Sparse coding, which is a sta-
tistical model that can be learned using only a small amount of data, was used to train the clas-
sifier with the sensing data. The classifier was then re-trained using SVM based on the initial
training results. Thereafter, the gripping states were estimated [55]. Larson et al. proposed a
soft tactile interface that can recognize human gestures and contact location based on a capaci-
tive-type tactile sensor array made of stretchable carbon nanotube dielectric elastomer embed-
ded in a rubber membrane [30]. To determine the features including gestures and contact
locations, the sensor data were trained using a three-dimensional CNN (3D-CNN) model for
gesture recognition, and a 2-dimensional CNN model for contact localization. Calandra et al.
attached GelSight high-resolution pressure mapping sensors to a fingered gripper for the anal-
ysis of the tactile information upon contact between the gripper and the object [56]. Then, the
efficient and stable grasping adjustment for the most promising grasping motions was pre-
dicted through the proposed end-to-end action-conditional model based on a deep multi-
modal convolutional network. The model overcomes the limitations of traditional gripping
strategies that are primarily dependent on visual information. It provides a strategy for reliable
gripping without the requirement of complex sensor calibrations or analytical contact force
modeling. Zimmer et al. also conducted a study to estimate effective grasping of a shape-mem-
ory actuated gripper using multiple machine learning methods such as LSTM, SVM, spatio-
temporal hierarchical matching pursuit (ST-HMP) [57], and a feed-forward neural network
(FNN) [58].

Furthermore, Yuan et al. estimated the shore hardness of contacted objects by obtaining
features of image frames based on pressure distribution data via the GelSight soft sensor by
using a CNN and LSTM [26]. Baishya et al. conducted a study on material classification by
attaching a flexible tactile skin to a robot hand. They used a CNN algorithm, whose perfor-
mances were then compared with those of several learning algorithms upon two datasets that
have different features [59]. A pressure-mapping sensor (Tekscan; Grip VersaTek 4256E) was
used to gather spatiotemporal signals. Six types of materials were classified using CNN. There-
after, the performance of proposed CNN algorithm was compared with those of various classi-
fication algorithms including Gaussian classification, kNN, and SVM; the CNN algorithm
showed better classification accuracy. Polic et al. conducted a study to determine object shape,
edge position, orientation, and indentation depth information required for object manipula-
tion using an optical-based tactile sensor (TacTip) attached to the end effector of a robotic arm
based on a CNN algorithm [60]. The main contribution of this study was the implementation
of an unsupervised feature extraction method using a CNN autoencoder. This model allowed
for the extraction of sufficient features from a small size dataset in addition to rapid model
training due to its simple architecture. Masaki et al. conducted a study on the estimation of
surface undulation using a strain gauge and an artificial neural network [61]. A system for the
estimation of the surface undulation was then implemented by attaching the strain gauge cov-
ered with the silicone rubber layer to an index finger. The signal from the strain gauge was
pre-processed and inputted into an FNN for the estimation of the surface undulation levels.
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There also are various cases that multiple soft sensors are used in wearable devices to recog-
nize human motions. Soft pressure sensors have been attached to soft gloves and insoles to rec-
ognize gripping states and walking motions by detecting in-contact with objects or ground.
Soft strain sensors primarily estimate upper or lower limb motions, gait or hand motions by
being attached to the joints with a single DOF or multiple DOF, i.e., finger, elbow, shoulder,
knee, and ankle joints [62-65]. For these applications, the data obtained from soft sensors are
correlated with the human biomedical and kinematics information such as the gait pattern.
However, the relationship is not linear, thus increasing the complexity of the modeling and
sensor calibration. Learning-based methods have been recently proposed to overcome such
limitations.

Kim et al. proposed a deep full-body motion network (DFM-Net) for calibrating human
motions. In the study, using a wearable sensing suits with 20 strain sensors; an encoder-
decoder structure was proposed for encoding sensor information based on LSTM, and the
decoding kinematic information using an FNN [66]. Kim et al. also proposed a gait motion
generation method based on two multi-fluidic soft strain sensors [67]. The objective of the
algorithm is to decrease in the amount of data based on a semi-supervised approach. In partic-
ular, the gait motion was embedded using an autoencoder, and decoded using an FNN.

Various studies were also conducted related to human hand. Glauser et al. employed neural
networks for the analysis of strain sensor data and the recognition of hand motion [68]. In par-
ticular, various deep learning-based algorithms, which included a fully convolutional network
(FCN), LSTM, residual neural network (ResNet) [69], U-Net [70], and conditional generative
adversarial network [71] were used; and U-Net yielded the highest accuracy with respect to the
reconstructions of hand motions. In addition, Sundaram et al. conducted a study related to
grasping using a scalable tactile sensor glove with 548 sensors [25]. They estimated the grasped
objects, and their weights were determined using a CNN. It also explained the key correspon-
dences of different human hand regions by measuring tactile patterns during grasping.

2.1.3 Sensors: Limitations and future works. Good learning results can be caused by
well-trained learning models using sensor datasets with consistent signal patterns and ranges.
However, since soft sensors have manufacturing tolerances for several reasons, such as varia-
tions of elastomer properties and manufacturing human errors, even homogeneous sensors
have variations of characteristics, resulting in performance variations, such as different initial
offset and operating ranges. In addition, test conditions such as the size of an indenter and
clamping types can make a sensor behave differently; output data can be susceptive to change
even if input data are the same. In this case, even if a model shows excellent learning results
based on datasets from one specific sensor, the model cannot be applied to other sensors. In
addition, since sensors made of soft materials are not durable enough for long time usage, drift
can occur in sensor response as sensor structure is permanently deformed. Although there are
some learning approaches such as transfer learning [53, 54] and multi-domain learning to
address such limitations, improvements in sensor hardware aspects of sensing mechanisms,
materials, and manufacturing processes must be accompanied for fundamental solutions.

Machine learning has its ability to extract important features from massive and multi-
dimensional data. This enables researchers to design new types of soft sensors based on novel
mechanisms while minimizing the concerns of dealing with sensor behaviors that can be diffi-
cult to analyze using analytical models. There are typical examples such as a multi-axis force
sensor using a silicone matrix embedding multiple biometers [52] and tactile sensors capable
of detecting contact forces and shape of contact objects by analyzing silicone surface images
using camera sensors [53, 56, 60]. Since these novel sensors have a hardware design or a sens-
ing mechanism that makes sensing datasets more complicated, they cannot be easily developed
due to the limitation of data processing methods until activation of the use of machine learning
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techniques. Therefore, by understanding the characteristics of various learning approaches
and taking advantage of an appropriate machine learning technique, researchers can try more
various sensor designs and mechanisms to develop novel sensing structures without concerns
about data processing. This shows one of the technical synergies that the learning-based
approaches and soft sensors can create in the future.

2.2 Actuators in soft robotics

Soft actuators are often combined with rigid robot bodies or embedded in soft robots to con-
trol them. Soft actuators are mainly categorized as pneumatic actuators (SPAs) [72-74], cable-
driven actuators [75], electroactive polymers (EAPs) [76], and shape memory alloys (SMAs)
[77-79] based on their actuation methods. Fig 3 depicts the inputs and outputs of machine
learning models used in soft actuators.

Due to the high degree of freedom of hyper-elastic materials [80], it is difficult to realize
accurate proprioception or control of soft robots using soft actuators. To control them, high-
dimensions of soft morphology should be actuated with less control inputs. In addition, time-
varying material characteristics limit the dynamic modeling of soft actuators. In detail, the deg-
radations of soft matter, i.e., creep, fatigue, and friction, known as critical factors of time-vary-
ing material characteristics, are often occurred, which limits the dynamic modeling of the soft
actuators. For example, frictions between the cable and cable sheath in a cable-driven approach
make cable tensions highly fluctuate, which in result increases the hysteresis of cable-driven
actuators and shortens the lifetime [81]. At present, machine learning methods have been
extensively applied to the modeling of soft actuators that have high degree of freedom and to
the generating control strategies in order to deal with the aforementioned non-linearity issues.

This section introduces existing machine learning-based researches conducted on soft
pneumatic actuators and cable-driven actuators, among other actuators such as EAPs and
SMAs.

2.2.1 Soft pneumatic actuators. Soft pneumatic actuators (SPAs) have been extensively
researched due to their flexible motions with simple morphological structures and versatility.
To improve the functionality of SPAs, various sensors have been integrated for training data
obtained from soft pneumatic actuators. Given that the solid-state sensors traditionally used in
rigid robots may limit the flexible movements of SPAs, soft and flexible sensors have frequently
been integrated to obtain contacts or bending motions of SPAs. In addition, the simple inter-
nal pressure sensor data of the SPA was used to improve the functionality of the soft gripper
[82]. RNNs were employed for the SPAs, which were integrated with soft resistive sensors to
obtain the contact forces and the bending motions [10]. Instead of embedding the sensors into
the SPAs, a camera sensor was used to obtain the states of the actuators. To track the 3D trajec-
tories of the SPA, an inverse model was also employed for training, as the application of the
nonparametric and online learning of locally-weighted projection regression for endoscopy
applications [83]. Jung et al. developed a proprioceptive sensing method of a soft pneumatic
actuator based on the GP regression by incorporating with an extended Kalman filtering for
state estimation and sliding mode control for the feedback control strategy [84].

Obtaining a kinematic or dynamic model of a soft robot has been a challenge in model-
based control strategies. To overcome such limitation, learning algorithms have been applied
to acquire the kinematic or dynamic model of soft robots based on SPAs [85-88]. An FNN
and radial basis function (RBF) neural networks were applied to the inverse or forward kine-
matic modeling of a soft continuum robot based on SPAs including 3-Dimensional motions
[85, 86]. M. Gillespie et al. and P. Hyatt et al. proposed a predictive model based on the neural
networks, and a learning method for the linearized discrete state space representation of soft
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robots [87, 88]. G. Fang et al. developed a learning method based on the local Gaussian Process
Regression (GPR) to estimate the motion of SPAs using the kinematic model from the control

inputs to the manipulator configurations based on the sequential camera images [89]. Instead of

the inverse, or forward kinematic modeling, an asymmetric hysteresis of a pneumatic artificial

muscle was modeled by integrating the Convolutional Neural Network and an existing extended
up-parallel Prandtl-Ishlinskii model. J. Kim used a Gaussian Process Regression to learn control

policy for a simple tripod mobile robot based on membrane vibration actuators [90].

M. Rolf et al. developed learning strategies to obtain an inverse model, which indicates the

relationship between the target position and the required control inputs [91]. Instead of
modeling the dynamics of a soft robot itself, hysteresis was also predicted for a pneumatic
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artificial muscle over a wide range of input by combining conventional hysteresis model and
the CNN [92]. M. Wiese et al. studied hyperparameter optimizations to model SPAs using a
simple FNN [93].

Another approach for controlling the pneumatically actuated soft robot is a model-free
learning algorithm, which is a learning method to calculate the control policy without an ana-
Iytical model. Reinforced learning algorithms such as Q-learning have been usually used for
the model-free approaches [94]. In general, the objective of reinforcement learning is to find
the control policy that maximizes the expected discount return, which is the weighted sum of
rewards received by the agent for the system [95]. X. You et al. and S. Satheeshbabu et al. devel-
oped and implemented a multi-segment soft manipulator for planar motions using the Q-
learning algorithm [96, 97]. J. Kim et al. used a model-free reinforcement learning algorithm
to control a pneumatic actuated tripod mobile robot. They used an adaptive soft actor-critic
(ASAC) algorithm and a reinforcement algorithm to obtain an accurate dynamic model of the
robot [98].

Commercially available sensors, like depth cameras, film-based flex sensors, and potenti-
ometers, are generally used to estimate the configurations of SPAs with machine learning tech-
niques [85, 88, 89, 91]. On the other hand, as the traditional sensors can be relatively too rigid
to be compatible with SPAs that are highly deformable, soft sensors have often been integrated
with SPAs to estimate the configurations of soft robots. However, the non-linear behaviors of
the soft sensors may cause delays when estimating states of soft robots. For example, T. Thur-
uthel et al. suggested SPAs integrated with a soft sensor using cPDMS (carbon-polydimethylsi-
loxane) and film-based flex sensors to estimate contact forces or configurations; they reported
that the proposed learning-based model showed longer delays when using the soft sensors
compared to the film-based flex sensors due to the high-dimensional deformability of soft sen-
sors [10]. Based on this perspective, it would be an open issue for the future direction to
develop soft sensors with fast responses. For instance, the development of three-dimensional
printing-based fabrication of soft sensors would be a possible solution to estimate the configu-
rations of SPAs in that it tends to have consistent and fast responses [99]. At the same time,
machine learning algorithms need to be developed to overcome the nonlinear dynamic
responses of soft sensors when integrated with SPAs. Although [92] showed potentials in that
the large hysteresis of the SPAs could be reduced via machine learning algorithms, it was lim-
ited to simple linear motions of Pneumatic Artificial Muscles (PAMs). Thus, it is necessary to
develop algorithms that deal with the non-linear and hysteresis behaviors of soft sensor-
embedded systems with fast responses, as a future goal.

2.2.2 Cable-driven (tendon-driven) actuators. In cable-driven or tendon-driven soft
robots, the actuators are situated outside of the robot structures; therefore, they do not inter-
fere with movements of the soft bodies. Instead, cables connected to the actuators transmit the
tensions through the cable paths or routings, which are embedded in a soft structure [100].
When it comes to controlling the soft robots, a major problem for the cable-driven mecha-
nisms comes from non-linearity and hysteresis. These issues are mainly caused by high friction
between a cable and cable path due to tension of the cable and the bending of the cable path
[101].

A supervised learning-based method was proposed with respect to soft manipulators as a
solution of the inverse statics problem to realize effective grasping. M. Giorelli et al. imple-
mented an FNN for non-constant curvature manipulators to solve inverse kinematics [102,
103]. The performance of the FNN-based model was experimentally tested by comparing with
model-based numerical approach and Jacobian-based method, which requires numerical reso-
lution of integrals along the structure as proposed in [104, 105], for a conical soft manipulator
driven by two cables. Based on the results, the FNN showed better performances and faster
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convergence than the model-based numerical method; however, FNN required model optimi-
zation and a bigger dataset [102].

Model-free control strategies based on RNNs were developed to learn the dynamics of
robots. For a soft robot with friction-manipulation mechanisms driven by a motor-tendon
combination that is capable of terrestrial locomotion, the model-free control framework was
experimentally applied to the robot designs while changing the shape of tendon paths, friction
mechanisms, and environmental conditions [100]. Nakajima et al. demonstrated a soft silicone
arm system that can be employed to deal with the transient dynamics of the soft materials
based on RNN and suggested its applicability to a real-world problem [106]. Ansari et al. con-
ducted a study on a soft robot arm module actuated by tendon-based and pneumatic-based
actuators for a bathing task for elderly people. Model-free control using reinforcement learn-
ing was developed to simultaneously increase the stiffness and positioning capacities [107].
Thuruthel et al. tested a tendon-driven soft manipulator under a simulated environment, in
addition to a pneumatically-driven soft manipulator, using model-based reinforcement learn-
ing for closed-loop dynamic control. For the forward dynamic model, an RNN was used.
Based on the learned dynamic models, a trajectory optimization was implemented to develop
an open loop controller; however, the authors reported that the open loop controller is not
robust against external disturbances [108]. To overcome this limitation, a model-based policy
learning method for the closed-loop dynamic control of a soft robotic manipulator using an
RNN was proposed. The representation of the policy architecture allows for the stability of the
controller with respect to changes in the control frequency, sensory noise, and dynamics. With
respect to the simulation of tendon-driven soft manipulators and experimental evaluations of
under-actuated pneumatically-driven soft manipulators, sufficient accuracy levels were main-
tained, and the control frequency was decreased by a maximum factor of 5 [109].

Previously, machine learning in cable-driven or tendon-driven actuators of soft robots was
focused on increasing the performances of position control. Rather than position control, soft
manipulators and soft wearable robots with cable-driven actuators require end-effectors’ force
or cable tension to generate proper contacting forces in accordance with various object charac-
teristics. However, due to the non-linear characteristics of friction and fatigue with the cable
and the cable path, degradations of the cable over time under various loads and situations is
still limited in soft robotic systems. As future works, a real-time applicable learning method
should be developed by collecting time sequence data of cable tension and the configuration of
the soft robot to estimate the precise force control of the soft robots [101].

2.2.3 Electroactive polymers and shape memory alloys. Ionic polymer-metal composite
(IPMC) flexible actuators are generally composed of ion exchange polymer films, with elec-
trodes on both sides, which have relatively low voltages (< 4 V), can generate large strains
(> 40%) and are capable of sensing and actuating under harsh conditions [110]. However, the
IPMC materials have time-varying performance changes and mechanical hysteresis as well as
high maneuverability and agile capabilities, thus making it difficult to plan paths of IPMC
manipulators. H. Wang et al. implemented a six-segment IPMC flexible manipulator; the
paths were encoded using a Gaussian mixture model (GMM). Moreover, the recommended
paths were generated using Gaussian mixture regression (GMR). The verification of the
learned paths was conducted using an IPMC manipulator. They reported that the data from
the operator were required, the generalized trajectories from the GMM and GMR could not
always ensure the complete reproduction of the demonstrated task, and the approach was
effective under static environments [24]. J. D. Carrico et al. presented machine learning with
Bayesian optimization for the effective motion control of 3D-printed soft IPMC actuators in a
soft crawling robot platform. However, there were challenging issues when it comes to control-
ling IPMC actuators. First, performance degradation occurred when the actuator operated
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such that the current voltage was higher than electrolysis voltage of the hydrating solvent. Sec-
ond, the performance of the conventional control methods deteriorated over time. Thus,
future works in controlling IPMCs will be predicting and planning the performance degrada-
tions using real-time degradation data [111].

Dielectric elastomer actuators (DEAs), consist of thin elastomer membranes between two
compliant electrodes, are known to have rapid responses, large voltage-induced deformations,
and noise-free operations. However, viscoelastic materials of the DEAs exhibit complex time-
dependent behavior, such as creep, hysteresis, and the Maxwell stress that is related to the
deformation of the actuators. As a result, the actual actuations based on the electromechanical
coupling are very non-linear and time dependent [112]. In the case of a cuttlefish robot with a
DEA as the jet-actuator, reinforcement learning algorithms such as Q-learning were used as
the actuation strategy. The experimental results verified that the optimized control using rein-
forcement learning can enhance the actuation performances [113]. Li et al. conducted a study
on DEA control. Based on deep reinforcement learning, a model-free method can be employed
to achieve the dynamic feedback control of DEAs under the consideration of their time-depen-
dent characteristics. Experiments were conducted on circular and rectangular DEA configura-
tions to test their accuracy and robustness with respect to changes in the material properties
and structures [112].

Shape memory actuators (SMAs) generate relatively large displacements and high force/
weight ratios. However, SMAs have difficulties when modeling and controlling them when the
space is continuous because the relationship between strain and temperature is hysteric and
changed abruptly [113]. Recent studies that involved neural networks on SMAs were focused
on SMA identification and modeling [114]. C. Cheng et al. proposed an SMA-actuated multi-
ple-DOF soft robot with a simplified adaptive neural network control algorithm for the
improvement of the accuracy of position control [62].

2.2.4 Actuators in practical uses. Several applications implementing soft actuators have
aimed to perform tasks other than calibrations, control, or proprioception. For instance, soft
wearable devices were employed to obtain body poses or fingertip forces due to contact. In
such tasks, the human-related applications increase the complexity of soft robots with addi-
tional non-linearity, which can degrade performances. In addition, the human-related applica-
tions are complex for several reasons. First, human physical factors are different from person
to person, like the height, weight, muscle strength, and patterns of human motions. Second,
there are several different muscles involved when generating a single motion.

In several studies, learning-based methods were proposed for the manipulation of wearable
hand robots. Ha et al. realized the position control of a soft wearable glove with pneumatic
actuators using pressure and vision data [115]. In particular, deep learning allowed for position
control in an open-loop without prior knowledge such as the user characteristics. Kim et al.
proposed VIDEO-Net for the detection of human grasping by the recognition of arm behavior
and hand/object interactions using a first-person-view camera [116]. The performance of
VIDEO-Net was verified using a soft wearable hand robot for disabled people. Kang et al. pro-
posed a learning-based fingertip force estimation method for wearable hand robots based on
the tendon-sheath mechanism. In addition, a bending time-gradient LSTM (BT-LSTM) was
proposed to mitigate the influence of the factors that decrease the accuracy of fingertip force
estimations: (1) non-linearity and hysteresis of wearable robots and human hands, and (2)
dynamic angular changes in the tendon-sheath [101]. Schlagenhauf et al. tested LR to control a
tendon-driven soft robot hand, Cyberglove. They compared learning-based approaches,
including kNN, LR, FNN, and deep reinforcement learning, when controlling soft foam robot
hands; they found that KNN outperformed the other three methods under the simulated envi-
ronment [117].
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For soft manipulators and grippers, machine learning algorithms are primarily employed to
obtain proprioception and control the robots to desired positions. Unlike rigid robots, soft
robots have a high number of DOFs; thus, they are difficult to model and control. To solve this
problem, machine learning models are extensively used. In particular, reinforcement learning-
based methods are primarily applied, unlike other soft robotic fields. Scimeca et al. utilized an
FNN to learn tactile image information. Moreover, an integration system with a tactile sensor
was proposed to obtain internal pressure distributions based on the neural network [118]. In
[23], a neural network controller for continuum robots was proposed. The controller com-
prised an FNN controller and a nonlinear feedback controller for the manipulation of an
OCTARM VI manipulator [119-121]. You et al. proposed a Q-learning method for the control
of a honeycomb pneumatic network (HPN [122]) manipulator. Satheeshbabu et al. proposed
an open-loop position controller based on deep reinforcement learning for a manipulator
(BR? manipulator [123]). Watson and Morimoto proposed to localize the tip of soft contin-
uum robots that have potential to be usable as medical devices in which the medical field
needs accurate control to guarantee safety. They used a LSTM to localize the magnet at the tip
of the robot compared to existing analytic and hybrid methods [124]. In [125], a hybrid model
for controlling a modular collaborative Variable-Stiffness-Link (VSL) robots has been pro-
posed. It consisted of forward kinematics and inverse kinematics whose models are 7-layer
FNN. The open-loop model was compared with a traditional model-based method, and
showed that their model outperformed the traditional model. [126] proposed a learning-based
approach for proprioception of three-dimensional soft sensorized robots. Unlike existing stud-
ies, it uses embedded sensor information. It also predicts 3-dimensional configuration of the
robots based on the sensor data. The paper used LSTM, which was compared with 2-layer
FNN, and showed that the RNN-based model reasonably estimates the steady-state configura-
tion of the soft robots.

2.2.5 Actuators: Limitations and future works. Due to the aforementioned material
characteristics, it is difficult to analytically or empirically model soft actuators using traditional
methods, thus making it difficult to design controllers. On the other hand, machine learning
methods have been used to control soft actuators with reliable results in limited workspaces. A
major disadvantage of using machine learning in control, compared to physical models, is the
requirement of large number of datasets. For example, when it comes to reinforcement learn-
ing, it requires a lot of rollouts to train the algorithms to obtain desired controller policies.

Overall, soft actuators commonly show mechanical hysteresis and functional degradation
over time. When soft actuators are employed in robotic applications, reliability is a dominant
issue. Soft actuators are made of soft materials; these materials are highly non-linear compared
to rigid materials, such as large distribution of elasticity and high dimensionality. This leads to
a difficulty to predict an appropriate lifetime of the model [127]. Thus, as a future direction,
applying a prognostic method will be useful to estimate the performance and the lifetime of
soft actuators for the practical implementations [128, 129]. Since the data-driv