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Impact of Physical Parameters and Vision Data on Deep Learning-based
Grip Force Estimation for Fluidic Origami Soft Grippers

Eojin Rho'*, Woongbae Kim?%%*, Jungwook Mun', Sung Yol Yu?, Kyu-Jin Cho? and Sungho Jo'f

Abstract— Knowing the gripping force being applied to an
object is important for improving the quality of the grip, as
well as preventing surface damage or destruction of fragile
objects. In the case of soft grippers, however, an attaching
or embedding force/pressure sensors can compromise their
softness and adaptability or increase the cost/complexity of
the manufacturing process. In this paper, we present a vision-
based neural network(OriGripNet) that can estimate gripping
force by combining RGB image data with key parameters
extracted from the physical features of a soft gripper. Real-
world force data were collected using a reconfigurable test
object with an embedded load cell while simultaneously image
data were collected by a single RGB camera mounted on the
wrist of a robotic arm. In addition, key geometry information of
the pneumatically driven origami gripper extracted from the
images, and applied pressure were further used for training
of the developed model. The results show that key physical
parameters and image information have their own strengths
in force estimation, contact estimation, and adaptability to
unseen objects, and that they have a synergistic effect on the
performance when combined.

I. INTRODUCTION

Enabling gentle and delicate interaction between robot
end-effectors and objects is an essential issue in extending
the practical use of robots. By incorporating sensory feed-
back into the robotic gripping system, the risk of dropping or
damaging the objects during pick-and-place operations can
be greatly reduced. Visual feedback is generally considered
as top priority, and is used to recognize the types, shapes,
and positions of objects as well as whether they are being
held or not [1], [2]. It is implemented through the proce-
dure of collecting visual data with a camera installed in a
workspace or on the robot manipulator and processing the
data using computer vision algorithms. On the other hand,
force feedback of the gripping system is also important when
it is required to prevent surface damage or breakage of
vulnerable objects, and to enable a grip that is selectively
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robust or adaptive to changing conditions. In many cases,
rigid force/pressure sensors are attached to the end-tips of the
conventional parallel grippers and data is directly measured
while positioned between the gripper and the object, offering
the advantage of high precision and easy integration of the
sensor into the gripper system.

Meanwhile, soft grippers composed of low-stiffness mate-
rials [3], [4] are intensively studied to solve challenging tasks
that are difficult to handle with conventional systems. These
tasks specifically require gentle grip and high adaptability,
exemplified by pick-and-place of fragile objects [5], [6],
application in food industry [7], [8], picking and inserting
coin [9], universal gripping [10], [11], [12], human robot
collaboration [13], and underwater operation that handling
marine life [6], [14], [15]. Enabling grip force feedback
for soft grippers would enhance their usability for the
applications and mitigate the disadvantage of difficulty in
control due to their inherent nonlinearity [16]. However,
direct attachment of the conventional sensors at their soft
end-tips eliminates the benefits of conformal and adaptive
contact of soft grippers. Soft sensors are also being ac-
tively developed as their skin-like perception is suitable for
flexible systems, but they are still immature for practical
use because the shortcomings associated with robustness,
hysteresis, degradation, integration cost, and interconnection
to electronics have not been fully addressed [17]. Indirect
contact sensing methods such as sensor embedding may
not compromise the adaptiveness of the soft grippers [18].
However, these non-contact force sensing methods require a
particular internal design and fabrication process of grippers,
which limits the design of the gripper and increases the cost.
Taken together, the development of a force measurement
method that preserves both the conformal contact properties
and structural simplicity of soft grippers is expected to
increase their usability.

Recently, deep learning-based gripper force estimation
methods are being studied to avoid the constraints caused by
attaching a force sensor to an end-effector. For parallel grip-
pers, studies that estimate the gripper force using deep learn-
ing networks with motor signals [19], vision data(deformable
Fin Ray Grippers) [20], [21], or both [22] as inputs have
been conducted for several years. In case of soft pneumatic
grippers, on the other hand, research of deep learning-based
force estimation is in its early stages with only a few studies.
To predict the contact force of the soft pneumatic actuator,
Thuruthel et al. [23] and Loo et al. [24] used a recurrent
neural network(RNN), taking pressure values and embedded
strain/flex sensor data as inputs. Ang and Yeow predicted
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The dual-origami soft gripper and OriGripNet for gripping force estimation. A) The deployment and bending motion of the dual-origami soft

gripper. B) Simplified diagram and PRBM model of one finger of a double origami soft gripper when an external force is applied. C) The architecture of

OriGripNet model.

a contact force of a two-chamber bidirectional pneumatic
soft actuator using internal pressures of both chambers as
inputs of the LSTM [25]. These works have proven that deep
neural networks can continuously predict the gripper forces,
when corresponding data sets such as internal pressures or
actuator geometry are sufficiently collected. The reason why
data-driven deep learning approaches can estimate the soft
actuators’ force is presumed to be that the geometry of the
soft systems is determined according to external force and
internal pressure [26], [27], yet existing studies have not
directly utilized domain knowledge that may be extracted
from mechanical modeling of soft robots. Furthermore, to
the best of our knowledge, there are no studies of pneumatic-
driven soft grippers’ force estimation using visual feedback
data and deep neural networks while the visual feedback
is commonly used in gripper systems, yet there is a study
that estimates the force exerted to the wrist of a robot-arm
through the vision data of soft grippers [28].

In this letter, we investigate the impact of parameters
extracted from domain knowledge of soft grippers and
RGB image data on grip force estimation performance, and
present a vision-based deep learning model OriGripNet. An
intuitive approximation modeling technique, Pseudo-Rigid-
Body-Model(PRBM), was inadequate to reflect the complex-
ity of the soft gripper due to the nonlinear stiffness change
during pneumatic actuation. Instead, we have extracted pa-
rameters related to the grip force based on the PRBM model,
applied pressure and joint position information. We collected

grip force and image data of dual-origami soft grippers for
objects of different sizes and surface geometries on a variety
of backgrounds. Then, we evaluated the grip force estimation
and contact estimation performances of models that selec-
tively consider parameters and images. The proposed model
OriGripNet, which takes the image as an input to CNN and
the pressure and joint position information as input to the
FC layers, demonstrated grip force estimation with a x9
performance improvement over the model using only vision
data, x2.63 improvement over models that don’t use images
directly but only key parameters, and x1.23 improvement
over the model using both vision data and pressure data. Ad-
ditionally, considering joint position information prevented
more than half of the false positives for contact estimation.
We expect that our results, which show that image, input for
actuator, and current gripper geometry information are not
only important for grip force and contact estimation but are
also synergistic with each other, will provide key insights into
the study of vision-based soft gripper grip force estimation.

II. MATERIALS AND METHODS

A. Dual-origami gripper

The schematic diagram of the dual-origami gripper we
developed in a previous study [9] is shown in Fig. 1A.
The dual-origami gripper was 3D printed to follow the
geometry of the Miura origami polyhedron, with pouch
modules of flexible material stacked in a zigzag pattern to
form an origami fluid network and an additional origami
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strain limiting layer inserted between the pouches. When
pneumatic/hydraulic pressure is applied, all crease lines of
the origami gripper begin to gradually unfold and the body
deploys mainly in the direction of lengthening. Then, once
the origami strain-limiting layers are fully unfolded, the
origami fluidic network, which is designed to be relatively
more stretched, is unfolded alone and the entire body bends.
The compact design of the dual-origami soft gripper provides
high space utilization when not in use. However, as a trade-
off for the space utilization of the folded shape, the origami
soft gripper has a complex geometry that makes it difficult
to embed appendages such as optical fiber sensors and
soft/flexible circuits.

B. Estimation of the tip force of the dual-origami soft gripper
via PRBM modeling

Single finger of the soft origami gripper can be rep-
resented in a schematic diagram as shown in Fig. 1B(i).
When the gripper is deployed by applied fluidic pressure
and the external force is applied to the end, most of the
deformation occurs in the form of angle changes at the
connections between the pouches(we call them ‘joints’).
Based on the deformation, we applied a pseudo-rigid-body-
model in which the rotational deformation occurs only at the
joints(Fig. 1A(ii)). For the sake of simplicity, the following
assumption(1-3) were made. (1) For the same design, the
origami gripper will always unfold to the corresponding
geometry for a given pressure value in an environment where
no external forces are applied. Namely, the rotation angle of
the n-th joint in the absence of an external force(¢,) would
be a function of the pressure(¢ = f4(P)). (2) The object is
only gripped at the gripper end, and the reaction force only
causes rotation at the joint. (3) The effects of gravity are
not considered. Letting the n-th joint be a nonlinear rotating
spring with torsional stiffness k,, the force expression for
the segmented PRBM model is given as follow where 6, is
the rotation angle of the n-th joint by external force:

(knfni1 — knbpni1) (@ + tan SN (A)7)
Li{eos S (A) +sin 32004 (Ag) tan 300 (As)}

where

ﬁ:

A; = (60 — ¢)

The above expression shows that if ¢ and k& are known
experimentally in advance for the gripper with a given design
geometry, the grip force can be estimated by detecting the
value of 6.

F = fF(k1:N7 le:N; 91:N)

However, we have concluded from simulation and experi-
mental results that & is nonlinear with respect to P and 6 due
to the complex geometry of the gripper, nonlinear materials,
and contact effects between the pouches(k = f.(P,9)).

C. OriGripNet

As we discussed in the previous section, gripping force
estimation through modeling of origami grippers with non-
linear materials and complex geometries is challenging.
However, the relationship between the variables shows that
the gripping force is determined by the applied pressure P
and the angular rotation of the joint 6;. due to the reaction
force during gripping. Since the angle values of the joints
can be derived from the position of the joints, the gripping
force has the following relationship:

F = fp(P,Ji.n)

Based on this domain knowledge, we developed a grip-
ping force estimating deep learning network OriGripNet as
shown in Fig. 1C. OriGripNet is composed of two ResNet-
based convolutional neural networks [29]. The first ResNet
layer(Force estimation Layer) is based on ResNetl8 and
extracts vision feature HY', followed by fully connected
layers to estimate force. The second ResNet layer(Joint
position estimation layer) is based on ResNet50 and aims to
accurately predict joint positions Jo:n. The estimated joint
value Jo,y and applied pressure P measured by the pressure
sensor are inserted into the FC layers of the Force estimation
layer, which is expected to improve performance compared
to ResNet with only vision data.

D. Real-world data collection and training

Data collection through FEA simulation and transfer to
the real world may be applicable for conventional parallel
grippers with relatively simple geometries and deformations.
However, for soft origami grippers made of hyperplastic
materials, simulation errors are large and FEA convergence
is difficult. We set up a data collection platform and col-
lected real world data. As shown in Fig. 2A, the gripper
was mounted on the end of the robot arm and an RGB
camera(1080P Low Light Wide Angle USB Camera, Ard-
uCam) was installed on the wrist of the robot arm(RB5-850,
Rainbow Robotics) to record the entire process of the gripper
deployment and bending. In order for the learning model
to effectively track each joint, we marked each joint with
different colors(Fig. 2A). Each joint location was labeled
using the DeepLabCut toolkit [30]. We selected 100 images
from the RGB image through k-means clustering [30], and
each joint location of the 100 images was manually labeled
using the GUI provided by the DeepLabCut toolkit.

Six length modules(1, 10, 15, 20, 30, and 40 mm) and two
shape modules(Flat, Round) were 3D printed and assembled
with a singe-axis load cell(333FDX, KOYTO) to create a test
object. The load cell was placed inside the object so as not
to affect the grip. For the diversity of image data to prevent
overfitting, three different backgrounds(white, green, and
black) were utilized with various objects (Fig. 2B and 2C).
The force, image data, and input pressure(was controlled
using pressure regulator(ITV1050, SMC) and analog voltage
output module(National Instruments)) were simultaneously
collected for two different gripper designs(3-joints and 2-
joints gripper) using LABVIEW(National Instruments). In
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Collection of visual and force data during object gripping. A) The 6-module dual-origami soft gripper and RGB camera mounted at the end of

the robot arm. B) For data diversity, 3D printed reconfigurable objects with variable shape and size, four different backgrounds, and two grippers with
different designs were used. (left). Real-world image data. (right). C) Example of continuously collected object grap-and-release image data.

TABLE I
GRIP FORCE ESTIMATION PERFORMANCE FOR EACH GRIPPER

Model 3-joints-gripper(MSE) 2-joints-gripper(MSE) Comp. Time(S)
Round Flat Round+Flat  Round Flat Round+Flat

Img 0.0084 0.0078 0.0079 0.0079 0.0042 0.0036 0.0061

Img+J 0.0104 0.0106 0.0122 0.0073 0.0013 0.0013 0.0301

Img+P 0.0011 0.0011 0.0009 0.0016 0.0008 0.0011 0.0062

Img+P+J 0.0008 0.0007 0.0005 0.0029 0.0004 0.0007 0.0261

P+J 0.0018 0.0007 0.0023 0.0011 0.0009 0.0003 0.0218

addition, gripping and releasing data were collected by
varying the pressure profile applied to the gripper. The
applied pressure profiles include holding the object for a long
time with a constant pressure, slowly changing the pressure
continuously or step-wise, and quickly gripping and releasing
the object with a rapid applied pressure increase followed by
a rapid decrease(Fig. 3). In addition, the data of lifting an
object by moving the robot arm in the opposite direction of
gravity and then moving it back and forth and side to side
were also included.

The network models proposed in this study undergoes
two training processes. First, the Joint layer was trained to
accurately predict the positions of each joint. The Joint layer
was trained for 100,000 iterations with a learning rate of
0.001 and weight decay of 0.01 using the Adam Optimizer.
Subsequently, the pretrained Joint layer was used to train
the Force estimation model. The Force estimation model was
also trained with a learning rate of 0.001 and weight decay
of 0.01 using the Adam Optimizer and was trained for 100

J indicates joint information
P indicates pressure information
Comp. Time indicates Computational Time

epochs. Model training was performed using three of the
same GPUs(Titan V, NVIDIA, USA). Both joint estimation
and force estimation used Mean Square Error(MSE) loss
functions.

III. RESULT

For convenience of description, we refer to Img as the
input of the image set to the force estimation layer, P as the
input of the pressure values to the FC layers, and J as the
input of the joint positions estimated from the joint position
estimation layer to the FC layers. For example, OrigripNet
can be denoted as Img+P+J. When only pressure and joint
data were directly used and image data was used only for
joint position estimation, it is denoted as P+J.

A. Grip force estimation performance

Table I shows the performance results of grip force esti-
mation networks that selectively used information from the
parameters. The grip force estimation networks were trained
with data sets of only Flat objects, only Round objects,
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Fig. 3. Visualization of the actual applied force(true f) and the predicted
force of each deep learning model(pred f) when gripper grip the test objects
with varying force and duration.

or both(Flat+Round), and tested on all types of datasets
for the corresponding gripper design(2-joints and 3-joints).
Additionally, Fig.3 shows the results of the force estimation
networks on the same dataset with various force/pressure
profiles. Both the numerical and visualization results show
that image information alone is an inaccurate predictor of
grip force, but that the addition of pressure information is
significantly helpful in predicting grip force. For example,
adding pressure information increased performance by more
than x8 for a 3-joint gripper(from 0.0079 to 0.0009) and x3
for a 2-joint gripper(from 0.0036 to 0.0011), each trained
on Round+Flat dataset. On the other hand, the effect of
adding joint information alone(/mg+J) was inconclusive,
as it degraded the performance of the 3-joint gripper and
improved the performance of the 2-joint gripper. Interest-
ingly, however, when joint information was added to Img+P,
i.e. OriGripNet, the performance generally increased(five of
six cases). The force estimation performance of OriGripNet
for the 3-joints-gripper and 2-joints-gripper trained on the
Round+Flat dataset was 0.0005 and 0.0007, respectively,

TABLE I
GRIP FORCE ESTIMATION PERFORMANCE WITH SELECTIVE FALSE DATA

Model Rand. Info. MSE(N?)
Img None 0.0042
Img+P P 0.0055
Img+P+J P+J 0.0073
Img+P+J P 0.0032
Img+P+J J 0.0018
Img+P+J None 0.0004

J indicates joint information
P indicates pressure information
Rand. Info. indicates random information added to the model

which is 1.8x and 1.57x better than the performance of
Img+P(0.0009 and 0.0011, respectively). It was also note-
worthy that networks that do not use image data directly,
but only utilize key parameter information(P+J), performed
as well as or better than OriGripNet in few cases. This
result supports our claim that grip force can be estimated
from only the important parameters(F' = fp (P, Ji. ~)), and
implies that other kinds of sensors besides camera providing
the joint position information of the gripper(e.g., embedded
bending sensors) can be also utilized to estimate the grip
force. However, we also suspect that the similarity of the
test and training subjects may have contributed to the high
performance of P+J, as the performances of the network
are relatively weak for the contact and release detection
and unseen objects which are presented in the following
sections(III-B and C).

For network computation time, OriGripNet on average
took 0.0261 seconds which is about 38.3 calculations per
minute. This result shows that when sensing with a real-
time camera at 30 fps, OriGripNet can also process the data
in real-time to estimate the grip force. In comparison, Img
and Img+P were more than x4 faster than OriGripNet(0.0061
second an 0.0062 second, respectively). This is because these
networks do not utilize the joint position information, while
the separate process of extracting joint information requires
a relatively long computation time.

To further validate the result that gripper’s state informa-
tion P and J increase the grip force estimation performance,
we trained the networks with false datasets of P or J that are
randomly generated. As shown in Table II, the performance
of Immg becomes progressively worse as the incorrect gripper
state information P and J are added(RMSE performance of
0.0042 worsens to 0.0055 and 0.0073, respectively). Also
interestingly, OriGripNet improves performance over Img if
at least one of the two gripper state information is genuine,
even if the other is false(0.0018 and 0.0032 for genuine P
or J, respectively), yet their performances are significantly
worse compared to the reference OriGripNet with RMSE of
0.0004. We believe that this result also supports the idea that
both P and J information are important for estimating grip
force, and it can also concluded from both Tables I and II
that P is particularly important.
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TABLE III
CONTACT DETECTION PERFORMANCE

Model Window Recall(%)
Gripping Releasing  Avg
Img 200 87.6 77.6 82.6
Img+J 200 89.2 78.6 83.9
Img+P 200 90.3 66.3 78.3
Img+P+J 200 94.7 86.2 90.5
P+J 200 82.2 74.6 78.4

J indicates joint information
P indicates pressure information

B. Contact estimation performance

Determining whether the gripper has contacted an object
is a necessary information for assessing the feasibility of
gripping and releasing actions. From the force estimation
results, we found that force estimation through learning is
subject to false positives of contact, which are not simply
represented by performance numbers. To evaluate this, grip
force estimation models proposed in this paper were tested
to confirm whether they could accurately detect contact
with the object. We have manually labeled the gripping and
release point, and only data around the actual contact(200
frames around the contact) was used as test data to obtain
recall(true positive rate for all actual contact, TP/(TP +
FN)) near where the actual contact occurs. Each model
was trained on data of gripping flat objects against a black
background. The result for the recall of each learning model
in determining contact is shown in Table III. As a result,
OriGripNet demonstrated the best recall among the proposed
networks, 94.7% for gripping and 86.2% for releasing with
an average recall of 90.5%. On the other hand, the P+J
model averaged 78.4% contact detection performance, which
is about 12% lower than OriGripNet, showing that image
information obviously plays an important role for the contact
decision. The average recall of the Img model was 82.6%,
and there was a slight performance increase when adding
joint position information(83.9% for Img+J). We believe
this is because the detailed gripper geometry information de-
rived from J is intuitively important in determining whether
contact is made. Also, the Img+P model showed more
than 12% performance degradation in contact information
during releasing compared to the /mg model. However, when
comparing the Img+J model to OriGripNet, we see that
OriGripNet has better contact information recall performance
during both gripping and releasing, suggesting that pressure
information helps improve the contact detection performance
when combined with detailed geometry information(J) of the

gripper.
C. Grip force estimation for unseen objects

To investigate the generalizability of our learning models,
we evaluated the performance of our proposed model with
unseen objects of different shapes commonly encountered
in everyday life. Three test objects - a cylinder, a sphere,

TABLE IV
GRIP FORCE ESTIMATION PERFORMANCE FOR UNSEEN OBJECTS

Model MSE(N?) MAE(N) MAPE(%)
Img 0.0808 0.2315 1632
Img+J 0.0778 0.2184 11.34
Img+P 0.0101 0.0760 7.08
Img+P+J  0.0082 0.0636 4.31

P+J 0.0220 0.1189 6.21

J indicates joint information
P indicates pressure information

and a cup - were 3D printed in half-form to allow for
the load cell to be built inside and assembled as shown
in Fig 4A. These unseen objects gripping data were also
collected for various applied pressure profiles in different
background environments as described in session II-D(Fig.
4B). The performance of pretrained models for the unseen
objects is shown in Table IV(For MAPE, a small value €
was introduced for cases where the reference ground truth is
zero) and Fig. 4C.

OriGripNet clearly performed the best for force estimation
on unseen objects, with MSE of 0.0082, mean average
error(MAE) of 0.0636, and mean absolute percentage er-
ror(MAPE) of 4.31%. For the models do not use pressure
data P(Img and Img+J), the MSE values were more than
x9 higher than OriGripNet, which are unacceptably poor
performances for use as shown in Fig. 4. The performance
of Img+P was 23% lower than OriGripNet based on the
MSE value, again showing a significant performance im-
provement when combining J data with P. We also found
that the Img+P model tended to estimate false positives
for unseen objects even before gripping occurred, which is
well shown in the cases where the gripping force increases
continuously/step-wisely(Fig. 4C). We suspect this is be-
cause the Img+P model relies too heavily on the pressure
input value, while it does not extract detailed geometry of
the gripper from the image alone(especially with background
data that is the same color as the gripper, black). In other
words, the Img+P model seems to be estimating the false
positive values just because the input pressure value is
increasing. The false positive problem is mitigated in models
with both P and J data, OrigripNet and P+J, indirectly
supporting our speculation. Finally, in contrast to the good
performance of the P+J model on known objects in Table
I, the performance on unseen objects was half of OriGrip-
Net(more than x2 based on MSE value). We believe that
this is an intuitive result that demonstrates the effectiveness
of Img data in “seeing” unseen objects.

IV. CONCLUSIONS

In this letter, we explored the impact of parameters related
to the gripping force of a deployable origami soft gripper
on the force estimation of a vision-based deep learning
model. We built a data collection setup and collected real-
world data of gripping 3D printed reconfigurable objects with
various backgrounds and applied pressure profile. As a result,
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Fig. 4. Test results for unseen objects. A) Design of the unseen objects with a built-in load cell. B) Image data of the soft gripper gripping the unseen

objects. C) Grip force estimation results for unseen objects.

we found that the model which utilizes only image and
actuation level(applied pressure) data showed ’acceptable’
performance, but there was a drawback that it seemed to rely
too much on the pressure value rather than the image, result-
ing in false positives even when the gripper does not make
contact with the object. On the other hand, when the model
considers the joint positions extracted from the markers in
the image, the force estimation performance increased by at
least 25%, and the incorrect contact detection was more than
halved, from 21.7% to 9.5%. The results showed that the key
parameters, P and J, and image data not only have their own
distinct roles in force estimation, but also have a synergistic
effect in improving performance when considered together.
Finally, the computational performance of approximately 38
fps and the force estimation performance of MSE 0.0082
showed the usability of the proposed model, OriGripNet.
We believe our approach provides fruitful insights into the
utilization of domain knowledge for soft machines and the

practical application of deep learning models using real-
world data.

On the other hand, because our work focused on identi-
fying the impact of key information parameters rather than
increasing the absolute performance or practicality, there is
much room for improvement. For example, our study only
estimated the force of a single axis in the direction of the
object being pressed, which is the most dominant. However,
for more delicate object handling, a 6-axis force torque
sensor can be utilized instead of a 1-axis load cell to obtain
the data, and then similar method presented in our work can
be applied. Moreover, we conducted training and verification
only on objects that are rigid and not easily deformed,
and the future work should be conducted on soft objects
since soft grippers mainly handle them. At this point, the
force estimation model that not only considers the physical
property of the gripper but also the physical property of
object can be designed. For example, our previous work that
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estimates the contact force between tendon-driven wearable
robot and deformable objects utilized the estimated stiffness
of objects from actuation data [31]. Similarly, a stiffness
estimation model that utilizes vision and gripper data could
be developed and applied to OriGripNet to improve perfor-
mance, especially for soft objects.
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