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Single to Multi: Data-Driven High Resolution
Calibration Method for Piezoresistive Sensor Array

Min Kim , Hyungmin Choi , Kyu-Jin Cho , and Sungho Jo

Abstract—Accurately detecting multiple simultaneous touches is
crucial for various applications using piezoresistance sensor arrays.
However, calibrating them is difficult due to their nonlinearity
and hysteresis. While data-driven deep learning approaches could
model complex sensor patterns, the required amount of labeled
data increases exponentially as the number of contact points or
sensor subelements increases. In this letter, we propose a novel
supervised learning framework, Local Message Passing Network,
that only needs single touch data to calibrate multiple contact
points into a high resolution pressure map. The individual sub-local
networks eliminate domain shift problems, while a message passing
mechanism enables them to correctly learn correlations between
neighboring sensor subelements. The performances of the proposed
model were tested on labeled single- and double-pressure data
and compared with previous deep learning calibration methods.
Experimental results show that our framework can expand prior
knowledge of single touch data to calibrate multi-touch sensor
inputs into high resolution pressure maps.

Index Terms—Calibration and identification, deep learning
methods, force and tactile sensing.

I. INTRODUCTION

W ITH the ability to detect externally applied pressure from
changes in electrical resistance, piezoresistive sensor

arrays have been widely used in the industrial fields [1]–[5].
However, electromechanical hysteresis and non-linearity are
reported to be major drawbacks of resistance-type sensors [6],
[7]. While there exists conventional calibration models used to
calibrate tactile sensor such as linear regression, polynomial
regression and decision trees [8]–[10], these drawbacks make
them hard to accurately calibrate sensor values into general
pressure units.

Furthermore, the problems get even more complicated when
we calibrate an array-like tactile sensor consisting of multiple
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sensor subelements. When using a tactile sensor, users do not
always press the center of the sensor subelement and pressures
are applied in between sensor subelements. Therefore, for a
tactile sensor having an array-like structure, an ideal calibration
method should be able to distinguish pressure applied in be-
tween subelements and generate a pressure map having a higher
resolution than the sensor structure.

Meanwhile, deep neural networks, as an important break-
through in machine learning, have significantly improved the
ability to model complex patterns. Naturally, several deep neural
networks have been used to model hysteresis and non-linearity
to accomplish various applications such as learning human body
motions [11], [12], hand gestures [13], [14] and classifying con-
tact objects [15], [16]. For general purpose calibration, different
learning-based models, such as RBF-Net [17], recurrent neural
network (RNN) [18], convolutional neural network [19], VGG-
16 [20] are used to model complex behavior of soft sensors.

Unfortunately, these previous calibration approaches were
built on an assumption that only a single point of pressure is
applied to the sensor. This assumption greatly limits the range
of applications these models can be used for. As illustrated in
Fig. 1(a), multiple contact points are crucial for fully understand-
ing their interactions with surrounding objects. Furthermore, as
demonstrated in Fig. 1(b), pressures can be applied to the side
of a sensor subelement. The sensor behavior patterns change
even with a slight shift in pressing location due to different
sensor deforming patterns. However, multi-touch calibration is
practically difficult when using learning-based approaches. Un-
like conventional approaches that separately calibrate individual
sensor subelements, learning-based approaches regard the entire
sensor values as a single input vector. If we simply calibrate
subelements separately with individual learning-based models,
it will lose its ability to calibrate pressure applied in between
subelements.

A naive approach for calibrating multi-touch using a learning-
based approach would be to collect all different cases of simul-
taneous touches and use them for training a model. However, if
we were trying to obtain two simultaneous touches from the
5 × 5 matrix-like sensor depicted in Fig. 1(c), the required
number of labeled data increases exponentially as the number of
simultaneous pressing combinations increases. As a result, fully
training a model this way would need an infeasible amount of
memory to store and computational time to process the data.
An approach that avoids collecting multi-touch data and only
uses a single touch data to train the model would be invaluable,
but existing models have found this task to be arduous as the
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Fig. 1. Motivation and design of the LoMP algorithm. (a) Schematic depiction of the multi contact applications of sensor arrays. (b) Illustration of different
pressing locations within a subelement. (c) 5 × 5 Piezoresistive sensor array with subelement numbers. (d) Design of the proposed LoMP training and testing
framework.

data distributions of the training dataset and the true dataset are
different. Differences in the distributions of the single touch and
multi touch datasets cause a domain shift [22] so that the model
is unable to clearly distinguish multiple touches.

In this article, we introduce Local Message Passing Network
(LoMP), a novel supervised learning framework. Trained only
with single touch data, the model is designed to calibrate multi
touch cases at testing time as illustrated in Fig. 1(d). Instead
of creating a network that takes all sensor values at a time, we
created several small subnetworks that only consider local sensor
inputs. Each subnetwork within LoMP is only responsible for
calibrating pressure applied to a designated subarea of the sensor.
We present our model can calibrate sensor values correctly
even when multiple points of pressure are applied to several ar-
eas. With message passing mechanism, our subnetworks utilize
neighboring messages to identify the pressure locations among
sensor subelements.

The rest of the letter is organized as follows. Section II
presents the sensor information and data acquisition setting. Sec-
tion III explains the proposed Local Message Passing Network.
Section IV discusses the performance evaluation of the proposed
methods. Finally, in Section V we conclude the letter and present
future works.

II. PRELIMINARY

A. Used Sensor Information

To demonstrate the effectiveness of our methods, we produced
a 5 × 5 soft pressure matrix sensor with Velostat (3 M Co.), a
piezoresistive material that is both flexible and low-cost. The
piezoresistive characteristic curve of the Velostat has been mea-
sured using 1cmx1cm sandwich shape sensor design and voltage
divider circuit proposed in [21] (Fig. 2(b)). The sensor comprises

Fig. 2. Data Acquisition Methods. (a) Experiment setup for training data
collection.(b) Characteristic curve of piezoresistive film (c) Illustration of the
sensor value reading process.

three layers: two electrode layers cover the middle piezoresistive
layer. The overall size is 115 mm x 115 mm with less than 0.2 mm
thickness. The sensing area of the sensor is 60 mm x 60 mm,
with each subelement size of 11.5 mm x 11.5 mm.

B. Data Acquisition

The experiment setup for data acquisition is depicted in
Fig. 2(a). The sensor was placed on a flat acrylic plate to avoid
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the shape of the sensor becoming distorted from the unsmooth
surface of the tabletop of a CNC milling machine (MiniMill,
OpenBuilds). A three-axis commercial load cell (RFT60-HA,
Robotous) was attached to the middle of cylindrical indenter to
obtain true pressure values. The cylindrical indenter is covered
by silicon coating made of Dragon Skin 10 to create a human
finger-like indenter.

The sensor values are recorded through an Arduino device
with the operation sequences depicted in Fig. 2(c). Each row of
sensor is connected to the digital output of the MCU(Arduino
Leonardo), and each column is connected to the junction where
the column of the sensor, analog input of the MCU and reference
resistor(330 O) connected to the GND gather. Firstly, the MCU
sets high input voltage(5 V) to the bottom row and low input
voltage(0 V, GND) to the other rows of the sensor. After sup-
plying input voltages to each row, the microprocessor measures
the voltage in each column of the sensor, which is related to
the resistance between the high voltage row and the measured
column, i.e. 0 to 4 subelements in this case. Finishing the
measurements, the MCU sets low voltages on the row with high
voltage values(bottom row) and high voltages on the immediate
above row(4th row), and measures the analog inputs of each
column(5 to 9 subelements‘ values). To read the sensor values
of all subelements once, the above tasks were repeated until the
top row became high voltage rows. After reaching the top row, all
the read analog values were saved as raw sensor values of each
subelement at a certain moment and repeated from beginning in
order to obtain sensor values for the next situation. The model
proposed in this letter uses 25 raw sensor value array to calibrate
the sensor. The current pressing coordinate and the pressure
value are combined to generate a label, a high-resolution (20x20)
pressure map. The CNC machine is coded to press all 400
(20x20) coordinates with 5 different pressing depths for 5 times
each. Different pressures ranging from 30 kPa to 400 kPa are
applied to each sensor coordinate.

To collect multiple ground truth pressures applied to the
sensor surfaces, we manually hold the second small-sized load
cell (Futek LCM300) to collect the second pressure. While the
CNC milling machine is instructed to press a single point in the
sensor subelement, we vertically press other sensor subelements
by manually holding the small-sized load cell. Due to physi-
cal limitations that two load cells collide when pressing two
consecutive sensor subelements, we could only collect multiple
touch data that are pressing two subelements that are at least one
subelements apart from each other. Note that while we tried to
accurately press the correct position in z-direction, there could
be human error where the pressed location is slightly shifted or
the load cell is tilted when generating data.

III. PROPOSED METHODS

A. Gaussian Pressure Map

Since the model is trained with single touch data and tested
with multi touch data, single touch data and multi touch data
should be labeled with the same data shape. Thus, a naive
expression such as discrete coordinates would make it hard
to express multi-touch data as the number of simultaneous

touches in real life applications is unknown. In addition, to
enable high-resolution calibration, labels should express high
resolution pressures. Therefore, we use a Gaussian pressure
map to label pressures applied to a certain area of a sensor.
Supposing that a pressureP is applied onto (c1, c2) coordinates,
the pressure map M for this pressure can be expressed with the
equation below:

M =
P

max(X)
X, ∀X ∼ Nk(μ, σ) (1)

where μ = (c1, c2), σ = r
2 and r stands for the radius of the

pressing tip. As a result, the pressure map labels express current
pressure in a higher resolution while preserving its spatial infor-
mation. When multiple simultaneous touches occur, the pressure
map is the Gaussian mixture of individual pressure maps.

B. Local Network

The key design of our network is the assignment of individ-
ual subnetworks for each sensor subelement so that the input
domain is consistent even when multiple pressures are applied
to the sensor. As illustrated in Fig. 3, sensor input vectors are
distributed to different subnetworks. Each subnetwork takes an
assigned sensor value and a previous hidden vector as its input.
These two inputs are used to generate a new hidden vector. This
process is recurrently applied for each time step so that our
network can utilize temporal behavior for corresponding sensor
subelements.

Given a current sensor value x = (x1, . . ., x25)
T ∈ R25 and

a previous hidden state ht = (ht1 , . . ., ht25)
T ∈ R25×128, sub-

network i will receive sensor valuexi and previous hidden vector
hti . We extract the current sensor stateh(1)

ti
based on both current

sensor input and previous hidden state as follows:

h
(1)
ti

= Wi(xi, hti), i ∈ [1, 25] (2)

where Wi is the iterative function, which in our case, is a gated
recurrent unit (GRU) [23]. To reduce latency caused by passing
information through recurrent units, we used a single layered
GRU for the iterative function. We assign distinct iterative func-
tions for each subelement and sensor values will pass through
different networks in parallel. To overcome hysteresis embedded
in piezoresistive film, the model is designed to utilize temporal
behavior of the sensor signals by recurrent structure.

C. Message Passing and Hidden Vector Update

Inspired by the powerful message passing style of
RecGNN [24], a summation-based information aggregation
method is selected as communication channels between different
subnetworks. In particular, once every subnetwork generates a
new hidden vector, hidden vectors of neighboring subelements
are aggregated to update the hidden vector. Therefore, when
pressure is applied in between two different subelements, the
correlation between the current hidden vector and neighboring
vectors is delivered through transmitted messages. Given a sen-
sor subelement with its hidden vector h(1)

ti
, i ∈ [1, 25] and its

neighboring subelements N (i), we calculate a message vector
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Fig. 3. The illustration of Local Message Passing Network (LoMP) structure consists of local network, message passing mechanishm and output generator.

mi as below:

mi =
∑

∀j∈N (i)

σ(Uh
(1)
tj

+ b) (3)

where U and b represent trainable parameters of a fully con-
nected network and σ represents an activation function such as
ReLU. The hidden values h

(2)
ti

of each sensor subelement i is
then updated using messages as below:

h
(2)
ti

= σ(Pi(h
(1)
ti

+ αmi)), ∀i ∈ [1, 25] (4)

where Pi denotes parameters of a fully connected network of
subnetwork i, σ is the activation function such as a rectified
linear unit (ReLU) [25]. A discount factor α is multiplied to the
messages so that a neighboring information is not propagated to
distant sensor subelements. Generated new hidden vectors are
passed on to the output generators for predicting pressure map
applied to the sensor.

D. Pressure Map Output Generator

Each individual network in LoMP generates a local pressure
map. These maps are combined to generate an overall output
pressure map. Our output model consists of 25 individuals
3-layered fully connected networks. Each network uses its cor-
responding hidden vector generated by the message passing
scheme and generates a 4x4 pressure map. The output pressure
map oi is computed as below:

oi = f(h
(2)
ti

||h(1)
ti

)∀i ∈ [1, 25] (5)

where f denotes 3-layered fully connected network and || repre-
sents concatenation between two hidden vectors. Generated 4x4
output pressure maps are concatenated while preserving their
spatial arrangement within the sensor. At the same time, the
new hidden vectors are passed to local network for the next time
step as the recurrent connection.

ht+1i = h
(2)
ti

(6)

E. Optimization Objectives and Training Strategy

The training process of the proposed method is to minimize
mean squared errors between generated heatmaps and labels.
The 4x4 pressure map generated by 25 individual sensor net-
works would be concatenated while preserving spatial con-
figuration to generate a 20x20 pressure map. The loss values
between the output vector o = [o1, . . ., o25] and label vector
l = [l1, . . .l25] is expressed as below:

Loss = E∀o,l

⎡
⎣ ∑
∀i∈[1,25]

[(oi − li)
2]

⎤
⎦ (7)

We train the network using an Adam optimizer with a learning
rate of 0.001.

IV. EXPERIMENT ANALYSIS

A. Data Description

1) Single-Touch Dataset: The first dataset is a single touch
dataset, which consists of 5× 5 sensor inputs and high resolution
20x20 pressure maps as labels. By using a sliding time window
of size 8 along the data sequence, 8 frames of consecutive
sensor inputs were grouped as a single input so that models
can utilize temporal sensor behavior. Therefore, the model can
utilize temporal behaviors of sensor signals. The dataset was
then divided into a train set, an evaluation set, and a test set with
ratio 8:1:1. Our model was trained using only training set of
the single touch dataset to demonstrate the expandability of our
model.

2) Double-Touch Dataset: The second dataset was acquired
by pressing two different sensor locations. To avoid collision
between the two different load cells while collecting the data,
two non-consecutive subelements are pressed. The double touch
dataset was used only as a testing set; the models did not receive
any multi touch information during training.
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TABLE I
EXPERIMENT RESULTS OF SINGLE AND DOUBLE TOUCH DATASET AND

COMPARISON OF THE OTHER CALIBRATION METHODS

B. Experimental Details and Comparison Methods

To validate the effectiveness and the superiority of our pro-
posed method, we compared our results with conventional re-
gression models [8]–[10] and supervised learning models [15],
[17]–[20] used to calibrate tactile sensors. In particular, we
compare behaviors of LoMP with RNN [18], CNN [19], and
ConvLSTM [15], three fundamental supervised learning archi-
tectures. All the hyperparameters are set as described on the
previous researches except the modified final layer for matching
the output dimension.

C. Results of Single Touch Pressure Calibration

In this section, we first use a single touch dataset to verify
whether the proposed model could accurately calibrate a high-
resolution single touch dataset when each subnetwork utilizes
only local information. Table I shows the root mean squared
errors of the single touch test dataset for different models.
From this table, we can observe that there is a clear loss gap
between conventional regression approaches and learning-based
approaches. Underlying hysteresis and non-linearity in the sen-
sor behavior make conventional regression approaches hard to
map sensor values into correct pressure values.

With a strong ability to analyze temporal data behavior,
learning-based approaches with deep neural networks could
predict not only the amount of pressure applied to the sen-
sor, but also pressure locations. While the sensor only has 25
discrete subelements, learning-based algorithms can accurately
calibrate pressures applied to 400 different locations, generating
high resolution pressure maps. Although the recurrent neural
network showed the lowest loss values, the losses between the
learning-based methods are relatively close as demonstrated in
Fig. 4. However, when a high pressure is applied, networks with
the convolutional neural network structure showed significant
perturbation. Since each sensor subelements was showing differ-
ent patterns, convolutional filters that share information across
the entire input make the network more sensitive to sensor value
changes. Furthermore, as each subnetwork of LoMP uses local
information, the proposed model is still more sensitive to local
sensor value changes than the RNN model. The conventional
regression models and RBF-Net could not accurately predict
pressures. With low model complexity, these models failed to

Fig. 4. Measured (black dashed lines) and estimated pressure for the single
touch data and corresponding L1 Loss values.

Fig. 5. Sensor behavior patterns when pressing different location (2.875 mm
apart) within the same sensor subelement 12, 17 and 22.

accurately handle non-linearity and hysteresis entangled with
multiple sensor subelements.

As demonstrated in Fig. 5, the sensor values change even when
the pressing location varies within the same sensor subelement.
When the pressing location is far away from the center, the sensor
values curve shifts to the left even when the same pressures are
applied to the sensor. Therefore, simply estimating pressures
with conventional regression methods is not enough for mod-
eling different spatial sensor behaviors. In the proposed model,
while each subnetwork only takes a single sensor cell value, our
message passing mechanism allows it to gather information from
neighboring subelements. Therefore, even if a pressure is applied
in between two different sensor subelements, the networks can
still correctly plot a shifted Gaussian pressure map for their
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Fig. 6. Measured and estimated pressures when two simultaneous pressures are applied to two different sensor subelements. Top two graphs compare measured
pressure and model predicted local maximums in pressed sub-region. Bottom row demonstrates corresponding sensor value changes. Label numbers represents
subelement numbers.

TABLE II
AVERAGE INFERENCE TIME FOR CALIBRATING SINGLE-TOUCH TEST

DATASET SAMPLES FOR DIFFERENT MODELS

designated area. Supplementary Video 1 shows more detailed
calibration results for RNN, CNN and LoMP.

Since calibration normally works as a preliminary task before
using sensors, it is important to have a model inference time
that is short enough. To analyze inference time for our LoMP
model, we measured average inference time while calibrating
1000 single touch test dataset samples. Different models, linear
regression, CNN, RNN and LoMP are tested using the Nvidia
GeForce GTX 1070, a performance-segment GPU. As listed
in Table II our LoMP model shows reasonable inference time.
While LoMP showed relatively higher inference time than those
of linear regression and CNN models, it only takes 1.45 ms
to calibrate a sensor input. Our LoMP model uses a 1-layered
GRU to reduce time required to calibrate sensor inputs than the
previous RNN model while showing similar performance for the
single touch data.

D. Results of Multi Touch Pressure Calibration

The second dataset contains data of two simultaneous touches.
As demonstrated in Table I, the loss values for RNN, CNN,
convLSTM, VGG16 increase significantly compared to our
proposed model. The calibrated results for two simultaneous
pressure values are illustrated in Fig. 6. While LoMP could gen-
erally predict two different pressures correctly, other learning-
based models were unable to predict pressure when multiple
pressures were applied. Fig. 7 highlights the loss values for
the different models when two pressures are applied to the

Fig. 7. Mean squared error loss values for different models when two pressures
are applied simultaneously.

sensor. Except for our proposed model, the loss values drastically
increase when a second pressure is applied to the sensor. This is
due to the domain shift problem of the original learning-based
approaches. Training only with single touch data, original su-
pervised learning models are only generalized to map single
pressure correctly. Therefore, when multiple pressures are ap-
plied to the sensors, the input sensor value is out of their domain,
resulting in unexpected misestimations for the applied pressures.
Interestingly, conventional regression models show relatively
low double touch losses. Since regression function assign a
simple individual weight to each sensor value, the loss value
only doubles when a second pressure is applied to the sensor. In
contrast, with high model complexity, VGG16 is more overfitted
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Fig. 8. 3D illustration of generated pressure maps. (a) Comparison between RNN, CNN and proposed LoMP model when two simultaneous forces are applied
to the sensor. (b) LoMP-estimated pressure map when triple pressures are applied at the same time. (c) LoMP-estimated pressure map for two continuous dragging
actions. (d) Generated pressure map when a rolled tape contacts with multiple neighboring subelements.

to the single data than other learning-based approaches. While
the RNN model showed lower loss values than the CNN and
convLSTM models, CNN and convLSTM showed better predic-
tions in Fig. 6. This can be clearly explained with 3D illustration
of the estimated pressure maps in Fig. 8(a). While the RNN
network showed good performance in calibrating single touch
cases, it was overfitted to the single touch domain and could
not distinguish two different pressures applied to the sensor.
CNN, with its shared filter mechanisms, could generate two local
maximums at the correct positions. However, as the shared filters
were applied to all input values, positions where no force was
applied were also affected by its filters. As a result, CNN-based
models exhibited higher loss values than the RNN network. As
demonstrated in the figure, only LoMP could calibrate multiple
points of pressure without falling into a domain shift issue.

Since LoMP consists of different local networks that only take
local information, the domain taken by each individual network
is hardly affected by a second pressure. When an additional
force is applied, the sensor inputs only affect their corresponding
local networks. The information in each network’s point of view
is bounded to the sensor signals applied to its own cell and
neighboring cells. Therefore, these results demonstrate that the
proposed model framework avoids domain shift issues.

E. Different Multi Press Cases

To further demonstrate the effectiveness of our model, we
demonstrated three different multi-press cases. As illustrated
in Fig. 8(b), (c), (d) and Supplementary video 1, our model
can calibrate different multi-touch cases. The model could not
only detect more than two simultaneous touches, but also two

simultaneous sliding motions across different sensor cells. Fur-
thermore, as demonstrated in Fig. 8(d), when we press multiple
neighboring cell with a rolled velcro tape, the pressure map
deforms as the contact area between the tape and the sensor
increases. The generated left-tilted pressure map clearly reflects
the pressing hand motion in which the thumb is slightly lifting
the right side of the object while the index finger is pressing
the center. Therefore, above pressure estimations reveal that the
proposed learning framework can also be expanded to calibrate
different complex pressing patterns.

V. CONCLUSION

To overcome drawbacks of soft tactile sensors and achieve
a calibration method that enables high-resolution multi-touch
calibration, this article proposed an efficient learning model
called LoMP. By assigning different subnetworks to different
sensor subelements, we avoid domain shift problems when the
domain for training and testing is different. To achieve the
high-resolution calibration, a message passing mechanism is
applied so that each subnetwork can obtain neighboring cells’
information through their messages. Meanwhile, Gaussian pres-
sure maps are used to label inputs to not only guide different
models to learn the spatial arrangement of pressure values but
also express different pressure patterns in a single map. Testing
loss values for both single touch dataset and double touch dataset
were compared between our proposed model and previous cali-
bration models. LoMP could calibrate pressures applied to one
of 400 pressing locations within a 5 × 5 array-like tactile sen-
sor. Furthermore, the results indicate that LoMP could achieve
multi-touch calibration even trained with single touch data, an
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achievement infeasible for previous learning-based models. Dif-
ferent multi-touch calibration scenarios such as triple touches,
two simultaneous sliding touches, and area pressing were also
illustrated. The results show that LoMP can be applied to various
multi-press scenarios.

While we tested double touch scenarios for LoMP, we could
not collect ground truth pressing data for two consecutive
pressing points due to collision between two load cells. Such
physical difficulties in gathering labeled data are critical for
designing learning-based calibration methods, and we believe
our proposed method can be a good solution for it. Furthermore,
although LoMP addresses the domain shift issues due to different
number of pressure points, the domain shift issues for different
pressing speeds, materials and patterns are also likely to cause
errors in data-driven learning-based approaches, and fixing these
issues have not yet been explored. Therefore, in future work,
we would like to improve our model to be robust to various
differences between training conditions and testing conditions.
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