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Manufacturing paradigms have historically been shaped by social, economic, and technological aspect, including limitations and

needs. Design for manufacturing (DFM) has been the main paradigm for last three decades since design is defined by the limitations

of available manufacturing processes. Since reducing the time required for the development of new products has been one of the key

issues for businesses, removing the gap between designers and manufacturers has been one of today’s main goals. Many methods were

developed to reduce this gap including information and communication technologies (ICT). However, current issues have been shifting

towards design-related issues such that researchers have been trying to make products desired by the customers rather than that which

is cheaper to manufacture. In this article, hybrid manufacturing (HM) and the concept of smart factory are introduced as key

technologies for the future paradigm of manufacturing: Manufacturing for Design (MFD). Issues related to the development of HM

process and examples of HM process are explained, and the importance of smart factories for the implementation of MFD is shown.

Finally, future trends of HM and smart factory are predicted at the end of this article.
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1. Introduction

Manufacturing takes raw materials and transforms them into useful

products through the use of diverse processes. Usually this process

contains multiple steps including product design, selection of materials,

material processing, manufacturing, packaging, etc. Throughout history,

many different processes have been developed to fabricate useful

products either through primary or secondary manufacturing processes,

such as hot working and cold working processes and metal forming and

metal removal processes. Also throughout history, changes in

manufacturing paradigms have followed historical events, technology

improvements or changes in consumers’ demands. Fig. 1 shows the

prevalent paradigm from the 1950s where manufacturing guides design.

Labor, types of factories, strategies related to scale, time, manufacturing

processes, and manufacturing technology are also factors that were

considered based on the change in scope of manufacturing. In the 1970s,

group technology, just in time (JIT), Taguchi and Design for X (DFX)1,2

were the major focus in the industry. The concept of DFX states that the

focus of the design process, as well as most of the factors and variables

that are considered at the design stage, is related to the stipulations in

order to add limits to the design that help in satisfying them. The reason

for these limitation-based design processes is that limitations stemming

from the manufacturing processes limit the freedom of design and thus

drives cost up significantly when adding complexities to the product.
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Thus, in the late 1900s, increasing productivity via minimizing the

cost of manufacturing was the main concern of designers, which led to

standardized products being the norm. Consequently, the shape of the

product was relegated to a secondary role and aesthetics was not highly

considered during the design process. Subtractive processes such as

machining represent the cornerstone of current manufacturing processes

due to their high precision and ability to shape a wide range of materials,

but these technologies have reached their limit in terms of producing

complicated geometries and processing hard-to-cut materials.

The main theme of DFX is design for manufacturing (DFM) which was

the dominant paradigm of the design and manufacturing industry of the

1990s. Since design decisions affect both the manufacturing costs and the

productivity, designers played an important role not only in determining the

shape and function of the product, but also its manufacturability, cost, and

lifecycle. In the case of subtractive manufacturing processes, 80% of the

cost of the manufacturing is determined during the design stage while the

cost of designing itself is only 10% of the overall cost. The general rules

of DFM consist of designing assembly with a minimum number of parts,

standard parts, modular design, and multi-functional parts, making parts

standard for multiple products, maximum surface roughness and tolerance,

avoiding secondary processes, using materials that are easy to manufacture,

minimizing the handling of parts, and setting the guidelines of design and

shape. These general rules focus on the cost and manufacturability of the

process, which lead to uniform/standardized products.

In recent years, additive manufacturing (AM) and sustainability

have become widely discussed topics in the field of manufacturing.

Additive manufacturing (three-dimensional (3D) printing) has opened

doors to numerous new applications since there is no need to define a

blank geometry or to consider jigs, fixtures, clamping, molds or dies,

requires minimal set-up and avoids handling more material than is

needed. Although additive manufacturing processes could find use in a

wide range of areas due to their increased capability and simplicity,

they have faced a lack of traction in industry. Material properties and

precision of the part are still the main issues in additive manufacturing,

but are not solely to blame for AM’s lackluster adoption rate.

Customization and diversity have emerged as some of the main

aspects desired by designers and customers alike, which is the opposite

of the previous DFM paradigm which promotes standardization. In

order to meet those needs, a new paradigm of manufacturing is

required: Manufacturing for Design (MFD). This paper introduces

Hybrid Manufacturing (HM), a tool of MFD, and discusses its key

issues such as platform, modularization and integration. Examples of

HM will be presented, and their importance in the successful

implementation of MFD will be elaborated later in this article.

2. Paradigm Shift from DFM to MFD

People have come to expect not only a specific functionality at a

low price from products which they purchase, but also a product that

fulfills other expectations: Aesthetics, multi-functionality, efficiency

and eco-friendliness. Nowadays, a product that does not meet these

needs is not likely to succeed despite being functionally sound. In

parallel, regulations are forcing designers and manufacturers to

consider end-of-life as a cost in addition to manufacturing costs. Thus,

previous DFM guidelines do not meet the needs of today.

An example of this phenomenon is Apple’s iPhone introduced in

2007, which was bundled with an array of functionalities in addition to

being able to make phone calls and browse the internet, and has been

successful largely due to its aesthetics. Fig. 2 shows the evaluation of

the material distribution of each model from 2008 to 2015.3 Since

2010, Apple has been using glass as a finishing material for the back

panel instead of plastic, which increased manufacturing complexity,

costs and weight of the phone. In 2012, the iPhone 5 increased its screen

size from 3.5 inches to 4 inches while reducing its weight to 80% (112 g)

of the previous model (140 g) by using aluminum for the structure, which

was fabricated via precision machining. In 2014, the iPhone 6 introduced

a filleted glass to the front of the phone, which required a manufacturing

process more advanced than that of the previously used flat glass pane.

The development of the manufacturing complexity of the iPhone was

guided by the needs to make a product that customers wanted to purchase

rather than one that met functional needs at a low price.

Fig. 1 Paradigm shift in manufacturing 

Fig. 2 Materials used in iPhones
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Such is the main reason for the creation of a new paradigm called

design realizing manufacturing (DRM) or MFD: manufacturing can be

used as a tool to improve the design of the product and thus increase its

viability in today’s markets. This stands in stark contrast to previous

practices where design was constrained by manufacturing limitations, as

shown in Fig. 3. The importance of implementing Smart Factory

concepts for MFD and meeting not only the customer needs, but also

their desires, will be shown. Concepts, implementation considerations

and examples will be discussed.

3. Hybrid Manufacturing

3.1 What is HM?

Although there are multiple definitions of HM, there is still an

ongoing debate on which definition is the most appropriate.4-21 In this

article, HM, or hybrid process, is defined as a combination of processes

that 1) have influence on the characteristics of the process or product,

or 2) involve one or more processes having a significant effect on the

results or characteristics of another. It can be perceived as a single

process that simply combines two different processes on one platform,

or a series of sequential processes taking place in separated

environments, as shown in Fig. 4. Previously, hybrid approaches were

implemented to improve the quality of the product or to enhance the

productivity/efficiency of the process. Lately, however, the goal of HM

has also expanded to enabling the manufacturing of products that

cannot be manufactured or fabricated by traditional manufacturing

(TM) processes. 

3.2 Why HM?

Some of the potential advantages of HM are: Efficiency, reduced

energy consumption, ultra-precision, and ability to process hard-to-cut-

material. A comparison of HM to TM, highlighting the advantages of

each, is shown in Table 1. However, depending on the combination of

processes the resultant hybrid hardware could give rise to

inefficiencies, higher energy consumptions, referencing errors, and

increased costs. Also, redundancies such as the non-operating time of

each process, energy, total process cost, and others should be

considered before implementing the HM process to avoid dealing with

the aforementioned disadvantages.

3.3 Issues of HM

Three components should be considered for the implementation of

HM: platform, process modules, and control (including S/W). The

selection of an appropriate platform will affect the performance of the

overall HM process since the precision, productivity, energy, and other

such factors are dependent on the platforms. Three types of platforms

are presented in this article, as shown in Fig. 5. 

Type ‘A’ is a platform based on subtractive manufacturing (SM).

SM is a TM method based on machine tools, which is one of the most

common tools in industry. Similar to tool changers in machine tools, an

automatic tool changer can be designed to enable modularized

manufacturing processes and be attached to the machine tool such that

processes like inkjet printing or deposition could be executed on a

single platform. One of the main issues of Type ‘A’ is the consideration

Fig. 3 Concept of DFM and MFD

Fig. 4 Concepts of two types of HM processes

Table 1 A comparison between TM and HM process

Requirement Limitation of TM process Advantages of HM process

Development of 

a new process
Gradual

Innovation/Fusion

(Physics + Chemistry 

+ Energy)

Workpiece 

material
Single material

Multi-Material

functionally graded material

Precision
Error from setup and 

transfer

Reduce reference

error by sharing stage

Complexity of 

feature

Limited by

single process

Full 3D feature

by hybrid process*

* ex.: Machining + 3D Printing
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of design of modules for additional processes.

Type ‘B’ is a platform based on additive manufacturing (AM),

which is also well known as 3D printing. Some of the major issues with

3D printing technologies are the process time, finishing, material

properties, post-processing, and precision. For these reasons,

machining or other post-processes are often added to the process.

However, since most of the 3D printing machines are designed for the

deposition process, the platform has a low stiffness and is relatively

weak compared to that of Type A. Therefore, additional processes are

usually placed in different frames or locations and share the same stage.

An alternative has been to place both processes in the same frame and

to conduct limited work such as flattening through grinding or

machining instead of freeform surface machining.

Type ‘C’ is a laboratory platform which is customized depending on

the combination of processes. This type of platform might be

constructed using components that are not available in the current

market. Additional axes, modules, stages, can be easily adapted to the

frame, and components like grippers or pins can be added. Similar to

many custom-made platforms, this type of platform may have issues

with rigidity. The advantages of this model are flexibility and

expandability. Two examples of this type of platform are shown in Fig.

5 (c, shape deposition manufacturing (SDM) from Stanford

University)22-26 and (d, nano composite deposition system (NCDS)27

from Seoul National University). SDM was developed in the late 1990s

and uses a vacuum chuck to combine two different processes in

different frames. As in Fig. 5(c), material is first deposited and the

vacuum chuck is the used to transfer it to a different stage for the

machining process. By repeating this process, 3D structures or parts

can be fabricated with embedded component(s). The main issue of this

process is the referencing between the two different platforms. NCDS,

on the other hand, was developed to fabricate functional 3D structure

in micro scale. The reference error, which usually occurs in sequential

HM using different platforms, was solved by sharing the stage.

Since HM has multiple processes, referencing between processes

need to be considered. Also, the modularization of each process is

required if each process has different environmental conditions. A

strategy for sharing a single stage among multiple processes is

important since changing stage affects the total process time and the

quality of the part. If the processes are in the same axis or frame, the

Fig. 5 Schematic diagrams of three different types of platform

Table 2 Comparison of three different platforms of HM

Type A Type B Type C

Process portion SM > AM SM < AM SM AM

Frame stiffness High Low Medium

Applicability of

concurrent process
Medium Low High

Compactness of H/W Low High High

Schematic diagram Fig. 5(a) Fig. 5(b) Figs. 5(c) and 5(d)

* SM: Subtractive manufacturing, AM: Additive manufacturing

Fig. 6 Referencing issues in HM
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errors may be minimized, but the structure of the platform may need to

be enhanced to support the increased weight from the additional

processes. To enhance the precision and to avoid errors from using

multiple stages as in Fig. 6(a), it is often suggested to use a single stage

for the processes as in Fig. 6(b). Although additional control for the

stage is required, the total process time will be decreased and the part

quality will potentially be improved.

Previously, HM was conducted to enhance the productivity,

improve surface quality, and increase the material removal rate.21

Since relatively better results can be obtained compared to

traditional single manufacturing processes, HM has also been

applied to hard-to-cut materials or functional parts. Hybrid processes

can also be used to expand the manufacturability and applicable

areas. Modularization will be critical to expanding manufacturability

and applicable areas using a single platform. As illustrated in Fig. 7,

if various modules use a standard form, then it can be easily attached

and assembled onto a single platform in order to conduct multiple

hybrid processes.

Another issue that needs to be considered for the successful

implementation of HM is integration of hardware (H/W) and software

(S/W) and the use of integrated controls, as in Fig. 8. To connect

different processes, the design of H/W, control of H/W and S/W, and

CAM (Computer-Aided Manufacturing) for each process must be

standardized for it to be used on a single platform.

The general process of developing an HM device has four steps.

First, the requirements of the applications are determined in terms of

materials, size, precision, porosity, or any other factors. Second, the

selection of a combination of manufacturing processes capable of

meeting these requirements is decided. Third, the modularization of

manufacturing process and standardization of the hybrid platform is

developed. Finally, the integration control of both H/W and S/W is

implemented.

3.4 Examples of HM Process

Numerous HM processes have been developed so far using diverse

combinations of traditional and non-traditional processes. Currently

available HM processes and the combination of manufacturing

processes from which they were created are shown in Fig. 9.

Multiple examples of HM processes combining deposition and

machining have been developed.22-27 NCDS enables manufacturing at

the micro-scale using multiple composite materials.27 The system has a

micro needle (140 micrometer in diameter) for the deposition process

and a micro end mill (100 micrometer in diameter) for the machining

process. The system has 3 axes for the movement of the stage, 3 axes

for the tools, one for the machining process and two for the deposition

nozzles of the deposition process. The hybrid process was compared

with two other manufacturing processes, deposition-only and casting,

and showed a lower error (0.17%) than both the deposition-only

(23.32%) and casting (14.55%) processes.

LAMill uses a laser combined with a conventional machine tool to

fabricate ceramic parts or parts from other hard-to-cut materials with

three dimensional shapes. A schematic diagram of this process in

shown in Fig. 10.28-32 AISI 1045 steel and Inconel 718 were used to

manufacture parts with a cylindrical shape using LAMill, and the

required cutting force and part accuracy were compared with

conventional machining. For the AISI 1045 steel part, the cutting force

was decreased by 82% and the surface roughness was improved by

Fig. 7 An example of modularization in the HM

Fig. 8 Integration issues in HM

Fig. 9 A list of examples of HM process
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53%. For the Inconel 718 part, the cutting force was decreased by 38%

and the surface roughness was improved by 74%. Other laser assisted

machining HM processes have also been explored, including turning,

planning, face milling, end milling, ball end milling, etc.33-52

Electrochemical machining (ECM) and electrical discharge

machining (EDM) were combined into an HM called electrochemical

discharge machining (ECDM) in order to enhance the performance of

key factors like the productivity and the surface roughness productivity

and the surface roughness.53-55 Micro ECDM and micro grinding were

used to realize hybrid micromachining of glass (Fig. 11).56 The total

machining time of this hybrid process was 30% lower than

conventional grinding processes while having better ground surface

quality.

Electrically assisted manufacturing is an HM that uses the electro-

plasticity of metals and metal alloys to facilitate manufacturing, obtain

a low processing energy density, improve the quality of the product,

etc.57-82 A schematic of electrically assisted machining is shown in Fig.

12. A new HM welding process called laser arc hybrid welding was

developed by combining an electric arc with a laser.83,84 

Deposition processes can also be improved using additional

processes such as the use of laser to fabricate sensors85-100 with

nanoscale structure, as well as to improve the surface properties.101-105

Also, the process can be applied to flexible or stretchable sensors.106-114 

To enhance the ability of atomic layer deposition (ALD), a plasma

process was added to form a new HM.115-123 This HM process is called

PEALD (plasma enhanced ALD) and showed a reduced electrolyte

thickness with higher surface grain boundary density.

Nano Particle Deposition Systems (NPDS) have been used to

create nano/micro-sized coatings and structures.124-126 NPDS was

combined with a 355 nm pulsed laser to form an HM process called

the Laser-assisted Nano Particle Deposition System (LaNPDS) to

achieve decreased thermal damage and sintering effect (Fig. 13).127

This HM process was used to fabricate flexible dye-sensitized solar

cells (DSSCs) by depositing TiO2 on glass and polymer substrates,

and samples manufactured by LaNPDS showed better efficiency

(1.00% for the glass substrate and 0.99% for the polymer substrate)

than those manufactured using NPDS (0.45% and 0.42%,

respectively). 

Chemical and mechanical polishing (CMP) were combined to

improve the quality of fabricated surface.128-159 Many studies regarding

the CMP were conducted, such as material removal rate (MRR), signal

analysis, formation of material defects, slurry reduction, slurry

components, process parameters, analysis of pressure distribution,

mathematical model-based evaluation methodology, effects of a spray

slurry nozzle, analysis of removal mechanism, macroscopic and

microscopic investigation, abrasive size, effect of pad groove geometry,

pad roughness variation, temperature distribution in polishing pad,

contact angle between retaining ring and polishing pad, and their

applications.

3.5 HM and MFD

It was shown that HM can be implemented in numerous methods

using a wide variety of processes. The reason for developing new HM

processes is that it brings to the table novel ways to produce parts with

new types of features and capabilities, thereby allowing customization.

Fig. 10 A schematic LAMill system

Fig. 11 A schematic diagram of hybrid micromachining using ECDM

and micro grinding

Fig. 12 A schematic diagram of electrically assisted machining

Fig. 13 A schematic diagram of laser assisted NPDS
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It also increases efficiency and allows production in smaller batches.

For these reasons, the use of HM will be one of the key enabling

factors of MFD to efficiently manufacture products that reflect the

designers’ imagination and customers’ wants by expanding the

limitations of possible design, enabling even broader customization

than what was considered possible.

4. Future Trends of HM and Smart Factory

MFD requires closer collaboration between designers and

manufacturers while simultaneously providing access to a larger array of

manufacturing processes for a more optimal function. However, MFD as

a paradigm is not yet complete in today’s industrial base, and will require

modifications at all levels for it to reach its full potential. It was shown

previously that a wide range of HM processes is available for designers

to augment their designs in order to make a complete product. However,

these new manufacturing processes are not likely to become as uniformly

available to facilities as the current manufacturing processes. But rather,

they can be easily adapted to a variety of designing requirements with

flexibility. Therefore, the main issues of the HM involve accessing

platforms, thus providing the designers with unrestricted access to these

new manufacturing capabilities.

Cloud-Based services with monitoring and design have been

gaining attraction and can be used as a platform on which the

factories of the future - the Smart Factories - can be built. The goal

of the Smart Factory concept is to enable any customer to access any

manufacturing capability necessary to manufacture a desired product.

The availability of cloud-based systems to design, improve and

augment designs for anyone, and to connect these designers with the

required manufacturing capability and processes, whether they are

subtractive, additive or hybrid, in a timely and efficient manner will

open a revolutionary door for the start of a virtual factory that

connects customers and manufacturers who are working from distinct

locations.together. 

Fig. 14 shows the concept for a Smart Factory where all

components ranging from customers to high-tech, low-volume

laboratories are interconnected, functioning as a single unit through the

use of cloud-based collaborative software. The factory might be a

subtractive manufacturing center capable of processing high-volume

parts, but without any HM capabilities. If the market demands a high-

volume part made solely by subtractive manufacturing, along with

lower volume parts made via the same process, followed by a hybrid

process, the Smart Factory system would help connect the customer,

the factory and the laboratory capable of the required HM process

while functioning seamlessly as a single factory and without the

implementation of a new supply chain. 

5. Conclusions

As the prevalent paradigm of manufacturing shifts from DFM to

MFD, the technology must also evolve to better meet the needs of

designers and customers. In this article, HM was introduced as an ideal

candidate for MFD due to its capability of increasing the speed and

efficiency of manufacturing, and the design space it allows. However,

Fig. 14 Future smart factory based on distributed manufacturing and HM
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HM faces many challenges in widespread adoption. The future research

of HM should focus on platform development, modularization, and the

integration of process planning and control. 

Although HM can provide better MRR, productivity, energy

consumption and/or precision than the current single processes, the

advantages and limitations of the entire HM process must be

considered, including any additional transport or delay in production

introduced by the introduction of a more complex manufacturing

system. For this reason, the concept of Smart Factory could assist in

reducing or eliminating such drawbacks of HM by combining large-

scale production by SM with remote small-scale HM capabilities, thus

reducing delays and minimizing secondary costs.
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